Journal of Fluorescence

, Volume 18, Issue 3–4, pp 601–610 | Cite as

Translational and Rotational Motions of Albumin Sensed by a Non-Covalent Associated Porphyrin Under Physiological and Acidic Conditions: A Fluorescence Correlation Spectroscopy and Time Resolved Anisotropy Study

  • Suzana M. AndradeEmail author
  • Silvia M. B. Costa
  • Jan Willem Borst
  • Arie van Hoek
  • Antonie J. W. G. Visser
Original Paper


The interaction between a free-base, anionic water-soluble porphyrin, TSPP, and the drug carrier protein, bovine serum albumin (BSA) has been studied by time-resolved fluorescence anisotropy (TRFA) and fluorescence correlation spectroscopy (FCS) at two different pH-values. Both rotational correlation times and translational diffusion times of the fluorescent species indicate that TSPP binding to albumin induces very little conformational changes in the protein under physiological conditions. By contrast, at low pH, a bi-exponential decay is obtained where a short rotational correlation time (φ int = 1.2 ns) is obtained, which is likely associated to wobbling movement of the porphyrin in the protein binding site. These physical changes are corroborated by circular dichroism (CD) data which show a 37% loss in the protein helicity upon acidification of the medium. In the presence of excess porphyrin formation of porphyrin J-aggregates is induced, which can be detected by time-resolved fluorescence with short characteristic times. This is also reflected in FCS data by an increase in molecular brightness together with a decrease in the number of fluorescent molecules passing through the detection volume of the sample.


Porphyrin Albumin Aggregation Binding TRFA FCS 



We thank Dr. J.A.B. Ferreira for helpful discussions on FCS. Professor J. Costa Pessoa is acknowledged for the use of CD spectrometer. This work was supported by POCTI/QUI//57387/2004. S.M. Andrade thanks FCT for the award of Post-Doc grant BPD/24367/2005.


  1. 1.
    Yeagle PL, Albert AD, Egea PF, Rochel N, Birck C, Vachette P, Timmins PA, Moras D (2001) Effects of ligand binding on the association properties and conformation in solution of retinoic acid receptors RXR and RAR. J Mol Biol 307:557–576CrossRefGoogle Scholar
  2. 2.
    Xiao B, Heath R, Saiu P, Leiper FC, Leone P, Jing C, Walker PA, Haire L, Eccleston JF, Davis CT, Martin SR, Carling D, Gamblin SJ (2005) Structural basis for AMP binding to mammalian AMP-activated protein kinase. Nature 449:496–U14CrossRefGoogle Scholar
  3. 3.
    Bode C, Kovacs IA, Szalay MS, Palotai R, Korcsmaros T, Csermely P (2007) Network analysis of protein dynamics. FEBS Lett 581:2776–2782PubMedCrossRefGoogle Scholar
  4. 4.
    Zhong DP, Douhal A, Zewail AH (2000) Femtosecond studies of protein-ligand hydrophobic binding and dynamics: human serum albumin. Proc Natl Acad Sci U S A 97:14056–14061PubMedCrossRefGoogle Scholar
  5. 5.
    Tatikolov AS, Costa SMB (2004) Complexation of polymethine dyes with human serum albumin: a spectroscopic study. Biophys Chem 107:33–49PubMedCrossRefGoogle Scholar
  6. 6.
    Lang K, Mosinger J, Wagnerova DM (2004) Photophysical properties of porphyrinoid sensitizers non-covalently bound to host molecules; models for photodynamic therapy. Coord Chem Rev 248:321–350CrossRefGoogle Scholar
  7. 7.
    Petitpas I, Petersen CE, Ha C-E, Bhattacharya AA, Zunszain PA, Ghuman J, Bhagavan NV, Curry S (2003) Structural basis of albumin–thyroxine interactions and familial dysalbuminemic hyperthyroxinemia. Proc Natl Acad Sci U S A 100:6440–6445PubMedCrossRefGoogle Scholar
  8. 8.
    Celej MS, Montich GG, Fidelio GD (2003) Protein stability induced by ligand binding correlates with changes in protein flexibility. Protein Sci 12:1496–1506PubMedCrossRefGoogle Scholar
  9. 9.
    He XM, Carter DC (1992) Atomic structure and chemistry of human serum albumin. Nature 358:209–215PubMedCrossRefGoogle Scholar
  10. 10.
    Luetscher JA Jr (1939) Serum albumin. II. Identification of more than one albumin in horse and human serum by electrophoretic mobility in acid solution. J Am Chem Soc 61:2888–2890CrossRefGoogle Scholar
  11. 11.
    Andrade SM, Costa SMB (2002) Spectroscopic studies on the interaction of a water soluble porphyrin and two drug carrier proteins. Biophys J 82:1607–1619PubMedCrossRefGoogle Scholar
  12. 12.
    Maiti NC, Mazumdar S, Periasamy N (1998) J- and H- aggregates of porphyrin–surfactant complexes: time-Resolved fluorescence and other spectroscopic studies. J Phys Chem B 102:1528–1538CrossRefGoogle Scholar
  13. 13.
    Paulo PMR, Gronheid R, De Schryver FC, Costa SMB (2003) Porphyrin-dendrimer assemblies studied by electronic absorption spectra and time-resolved fluorescence. Macromolecules 36:9135–9144CrossRefGoogle Scholar
  14. 14.
    Andrade SM, Costa SMB (2006) Spectroscopic studies of water-soluble porphyrins with protein encapsulated in bis(2-ethylhexyl) sulfosuccinate (AOT) reverse micelles: aggregation versus complexation. Chem Eur J 12:1046–1057CrossRefGoogle Scholar
  15. 15.
    Andrade SM, Costa SMB (2002) Aggregation kinetics of meso-tetrakis(4-sulfonatophenyl)porphine in the presence of proteins: temperature and ionic strength effects. J Fluoresc 12:77–82CrossRefGoogle Scholar
  16. 16.
    Elson EL (1985) Fluorescence correlation spectroscopy and photobleaching recovery. Ann Rev Phys Chem 36:379–406CrossRefGoogle Scholar
  17. 17.
    Heikal AA, Hess ST, Webb WW (2001) Multiphoton molecular spectroscopy and excited-state dynamics of enhanced green fluorescent protein (EGFP): acid–base specificity. Chem Phys 274:37–55CrossRefGoogle Scholar
  18. 18.
    van den Berg PAW, Widengren J, Hink MA, Rigler R, Visser AJWG (2001) Fluorescence correlation spectroscopy of flavins and flavoenzymes: photochemical and photophysical aspects. Spectrochim Acta A 57:2135–2144CrossRefGoogle Scholar
  19. 19.
    Carter DC, Ho JX (1994) Structure of serum albumin. Adv Protein Chem 45:153–196PubMedCrossRefGoogle Scholar
  20. 20.
    Vogel AI (1978) Textbook of quantitative inorganic analysis, 4th edn. Longman, LondonGoogle Scholar
  21. 21.
    Bychkova VE, Berni R, Rossi GL, Kutyshenk VP, Ptitsyn OB (1992) Retinol-binding protein is in the molten globule state at low pH. Biochemistry 31:7566–7571PubMedCrossRefGoogle Scholar
  22. 22.
    Kudryashova EV, Visser AJWG, van Hoek A, de Jongh HHJ (2007) Molecular details of ovalbumin-pectin complexes at the air/water interface: a spectroscopic study. Langmuir 23:7942–7950PubMedCrossRefGoogle Scholar
  23. 23.
    Digris AV, Skakoun VV, Novikov EG, van Hoek A, Claiborne A, Visser AJWG (1999) Thermal stability of a flavoprotein assessed from associative analysis of polarized time-resolved fluorescence spectroscopy. Eur Biophys J 28:526–531PubMedCrossRefGoogle Scholar
  24. 24.
    Dertinger T, Pacheco V, von der Hocht I, Hartmann R, Grego I, Enderlein J (2007) Two-focus fluorescence correlation spectroscopy: a new tool for accurate and absolute diffusion measurements. ChemPhysChem 8:433–443PubMedCrossRefGoogle Scholar
  25. 25.
    Dockal M, Carter DC, Ruker F (2000) Conformational transitions of the three recombinant domains of human serum albumin depending on pH. J Biol Chem 275:3042–3050PubMedCrossRefGoogle Scholar
  26. 26.
    Chen YH, Yang JT, Chau KH (1974) Determination of helix and beta-form of proteins in aqueous solution by circular dichroism. Biochemistry 13:3350–3359PubMedCrossRefGoogle Scholar
  27. 27.
    El Kadi N, Taulier N, Le Huerou JY, Gindre M, Urbach W, Nwigwe I, Kahn PC, Waks M (2006) Unfolding and refolding of bovine serum albumin at acid pH: ultrasound and structural studies. Biophys J 91:3397–3404PubMedCrossRefGoogle Scholar
  28. 28.
    Kuwajima K (1989) The molten globule state as a clue for understanding the folding and cooperativity of globular-protein structure. Proteins 6:87–103PubMedCrossRefGoogle Scholar
  29. 29.
    Dobson CM (1994) Protein folding. Solid evidence for molten globules. CurrBiol 4:636–640Google Scholar
  30. 30.
    Muzammil S, Kumar Y, Tayyab S (1999) Molten globule-like state of human serum albumin at low pH. Eur J Biochem 266:20–32CrossRefGoogle Scholar
  31. 31.
    Qiu W, Zhang L, Obkobiah O, Yang Y, Wang L, Zhong D, Zewail AH (2006) Ultrafast solvation dynamics of human serum albumin: correlations with conformational transitions and site-selected recognition. J Phys Chem B 110:10540–10549PubMedCrossRefGoogle Scholar
  32. 32.
    Goto Y, Takahashi N, Fink AL (1990) Mechanism of acid-induced folding of proteins. Biochemistry 29:3480–3488PubMedCrossRefGoogle Scholar
  33. 33.
    Matulis D, Baumann CG, Bloomfield VA, Lovrien RE (1999) 1-Anilino-8-naphthalene sulfonate as a protein conformational tightening agent. Biopolymers 49:451–458PubMedCrossRefGoogle Scholar
  34. 34.
    Maiti NC, Ravikanth M, Mazumdar S, Periasamy N (1995) Fluorescence dynamics of noncovalently linked porphyrin dimers and aggregates. J Phys Chem 99:17192–17197CrossRefGoogle Scholar
  35. 35.
    Akins DL, Ozcelik S, Zhu HR, Guo C (1996) Fluorescence decay kinetics and structure of aggregated tetrakis(p-sulfonatophenyl)porphyrin. J Phys Chem 100:14390–14396CrossRefGoogle Scholar
  36. 36.
    Mazzaglia A, Angelini N, Darcy R, Donohue R, Lombardo D, Micali N, Sciortino MT, Villari V, Scolaro LM (2003) Novel heterotopic colloids of anionic porphyrins entangled in cationic amphiphilic cyclodextrins: spectroscopic investigation and intracellular delivery. Chem Eur J 9:5762–5769CrossRefGoogle Scholar
  37. 37.
    Miura A, Shibata Y, Chosrowjan H, Mataga N, Tamai N (2006) Femtosecond fluorescence spectroscopy and near-field spectroscopy of water-soluble tetra(4-sulfonatophenyl)porphyrin and its J-aggregate. J Photochem Photobiol A Chem 178:192–200CrossRefGoogle Scholar
  38. 38.
    Castellano FN, Dattelbaum JD, Lakowicz JR (1998) Long lifetime Ru(II) complexes as labeling reagents for sulfhydryl groups. Anal Biochem 255:165–170PubMedCrossRefGoogle Scholar
  39. 39.
    Ferrer ML, Duchowicz R, Carrasco B, de la Torre JG, Acuna AU (2001) The conformation of serum albumin in solution: a combined phosphorescence depolarization-hydrodynamic modeling study. Biophys J 80:2422–2430PubMedGoogle Scholar
  40. 40.
    Marzola P, Gratton E (1991) Hydration and protein dynamics: frequency domain fluorescence on proteins in reverse micelles. J Phys Chem 95:9488–9495CrossRefGoogle Scholar
  41. 41.
    Lakowicz JR, Gryzynski I (1992) Tryptophan fluorescence intensity and anisotropy decays of human serum albumin resulting from one photon and two-photon excitation. Biophys Chem 45:1–6PubMedCrossRefGoogle Scholar
  42. 42.
    Bloomfield VA (1966) The structure of bovine serum albumin at low pH. Biochemistry 5:684–689PubMedCrossRefGoogle Scholar
  43. 43.
    Maiti NC, Mazumdar S, Periasamy N (1998) J- and H-aggregates of porphyrins with surfactants: fluorescence, stopped-flow and electron microscopy studies. J Porph Phthalc 2:369–376CrossRefGoogle Scholar
  44. 44.
    Lakowicz JR, Maliwal BP, Cherek H, Balter A (1983) Rotational freedom of tryptophan residues in proteins and peptides. Biochemistry 22:1741–1752PubMedCrossRefGoogle Scholar
  45. 45.
    Lipari G, Szabo A (1980) Effect of librational motion on fluorescence depolarization and nuclear magnetic-resonance relaxation in macromolecules and membranes. Biophys J 30:489–506PubMedGoogle Scholar
  46. 46.
    Visser AJWG, Vos K, van Hoek A, Santema JS (1988) Time-resolved fluorescence depolarization of rhodamine B and (octadecyl)rhodamine B in Triton X-100 micelles and aerosol OT reversed micelles. J Phys Chem 92:759–765CrossRefGoogle Scholar
  47. 47.
    Maiti NC, Mazumdar S, Periasamy N (1995) Dynamics of porphyrin molecules in micelles—picosecond time-resolved fluorescence anisotropy studies. J Phys Chem 99:10708–10715CrossRefGoogle Scholar
  48. 48.
    Gouterman M, Stryer L (1962) Fluorescence polarization of some porphyrins. J Chem Phys 37:2260–2265CrossRefGoogle Scholar
  49. 49.
    Galli C, Wynne K, Lecours SM, Therien MJ, Hochstrasser RM (1993) Direct measurement of electronic dephasing using anisotropy. Chem Phys Lett 206:493–499CrossRefGoogle Scholar
  50. 50.
    Rigler R, Mets U, Widengren J, Kask P (1993) Fluorescence correlation spectroscopy with high count rate and low-background—analysis of translational diffusion. Eur Biophys J 22:169–175CrossRefGoogle Scholar
  51. 51.
    Elson EL, Madge D (1974) Fluorescence correlation spectroscopy.1. Conceptual basis and theory. Bioploymers 13:1–27CrossRefGoogle Scholar
  52. 52.
    Haupts U, Maiti S, Schwille P, Webb WW (1998) Dynamics of fluorescence fluctuations in green fluorescent protein observed by fluorescence correlation spectroscopy. Proc Natl Acad Sci U S A 95:13573–13578PubMedCrossRefGoogle Scholar
  53. 53.
    Schwille P (2001) Fluorescence correlation spectroscopy and its potential for intracellular applications. Cell Biochem Biophys 34:383–408PubMedCrossRefGoogle Scholar
  54. 54.
    Widengren J, Mets U, Rigler R (1995) Fluorescence correlation spectroscopy of triplet-states in solution—a theoretical and experimental study. J Phys Chem 99:13368–13379CrossRefGoogle Scholar
  55. 55.
    Novo M, Felekyan S, Seidel CAM, Al-Soufi W (2007) Dye-exchange dynamics in micellar solution studied by fluorescence correlation spectroscopy. J Phys Chem B 111:3614–3624PubMedCrossRefGoogle Scholar
  56. 56.
    Höbel M, Ricka J (1994) Dead-time and afterpulsing correction in multiphoton timing with nonideal detectors. Rev Sci Instrum 65:2326–2336CrossRefGoogle Scholar
  57. 57.
    Enderlein J, Gregor I (2005) Using fluorescence lifetime for discriminating detector afterpulsing in fluorescence correlation spectroscopy. Rev Sci Instrum 76:033102CrossRefGoogle Scholar
  58. 58.
    Kapusta P, Wahl M, Benda A, Hof M, Enderlein J (2007) Fluorescence lifetime correlation spectroscopy. J Fluoresc 17:43–48PubMedCrossRefGoogle Scholar
  59. 59.
    Modos K, Galaantai R, Baardos-Nagy I, Wachsmuth M, Toth K, Fidy J, Langowski J (2004) Maximum-entropy decomposition of fluorescence correlation spectroscopy data: application to liposome-human serum albumin association. Eur Biophys J 33:59–67PubMedCrossRefGoogle Scholar
  60. 60.
    Chattopadhyay K, Saffarian S, Elson EL, Frieden C (2005) Measuring unfolding of proteins in the presence of denaturant using fluorescence correlation spectroscopy. Biophys J 88:1413–1422PubMedCrossRefGoogle Scholar
  61. 61.
    Haustein E, Schwille P (2003) Ultrasensitive investigations of biological systems by fluorescence correlation spectroscopy. Methods 29:153–166PubMedCrossRefGoogle Scholar
  62. 62.
    Collini E, Ferrante C, Bozio R (2005) Strong enhancement of the two-photon absorption of tetrakis(4-sulfonatophenyl)porphyrin diacid in water upon aggregation. J Phys Chem B 109:2–5PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Suzana M. Andrade
    • 1
    Email author
  • Silvia M. B. Costa
    • 1
  • Jan Willem Borst
    • 2
  • Arie van Hoek
    • 2
  • Antonie J. W. G. Visser
    • 2
  1. 1.Centro de Química Estrutural, Complexo 1Instituto Superior TécnicoLisbonPortugal
  2. 2.Wageningen UniversityMicroSpectroscopy CentreWageningenThe Netherlands

Personalised recommendations