Journal of Fluorescence

, Volume 18, Issue 3–4, pp 625–631 | Cite as

Low-Temperature Spectral Dynamics of Single TDI Molecules in n-Alkane Matrixes

  • Sebastian MackowskiEmail author
  • Stephan Wörmke
  • Moritz Ehrl
  • Christoph Bräuchle
Original Paper


We report on studies of the influence of the matrix on the spectral dynamics of the zero-phonon-line (ZPL) emission by means of single molecule spectroscopy at low temperature. The host–guest system combinations consist of terrylenediimide (TDI) molecules embedded in four n-alkane matrixes of hexane, heptane, pentadecane, and hexadecane. Excitations into the broad vibronic absorption band and spectrally dispersed detection allows us to monitor fluorescence of single TDI molecules as a function of time. In the case of long-chain n-alkanes (pentadecane and hexadecane), the ZPL line is quite stable, showing spectral jumps of moderate frequency of less than 10 cm−1 with an average time between the jumps of 10 s. In a clear contrast, the spectral dynamics of TDI molecules embedded within the short-length n-alkane matrixes (heptane and hexane) feature much more frequent spectral jumps that occur on a broader energy scale. The results suggest that matrixes composed of short-chain molecules are more susceptible to translations and/or rotations, which influence the fluorescence of single guest chromophores.


Single molecule spectroscopy Vibronic excitation Spectral dynamics n-alkanes Zero-phonon-line 



We thank Klaus Müllen for the gift of TDI. The financial support by Deutsche Forschungsgemeinschaft through SFB 533 (TP B7), SFB 486, Nanosystems Initiative Munich (NIM), and by the Alexander von Humboldt Foundation (S.M.) is gratefully acknowledged.


  1. 1.
    Tamarat Ph, Maali A, Lounis B, Orrit M (2000) Ten years of single-molecule spectroscopy. J Phys Chem A 104:1–16CrossRefGoogle Scholar
  2. 2.
    Kulzer F, Orrit M (2004) Single-molecule optics. Ann Rev Phys Chem 55:585–611CrossRefGoogle Scholar
  3. 3.
    Weiss S (1999) Fluorescence spectroscopy of single biomolecules. Science 283:1676–1683PubMedCrossRefGoogle Scholar
  4. 4.
    Moerner WE (2002) A dozen years of single-molecule spectroscopy in physics, chemistry, and biophysics. J Phys Chem B 106:910–927CrossRefGoogle Scholar
  5. 5.
    Moerner WE, Kador L (1989) Optical detection and spectroscopy of single molecules in a solid. Phys Rev Lett 62:2535–2538PubMedCrossRefGoogle Scholar
  6. 6.
    Orrit M, Bernard J (1990) Single pentacene molecules detected by fluorescence excitation in a p-terphenyl crystal. Phys Rev Lett 65:2716–2719PubMedCrossRefGoogle Scholar
  7. 7.
    Blum C, Stracke F, Becker S, Mullen K, Meixner AJ (2001) Discrimination and interpretation of spectral phenomena by room-temperature single-molecule spectroscopy. J Phys Chem A 1:05:6983–6990CrossRefGoogle Scholar
  8. 8.
    Hernando J, van Dijk EM, Hoogenboom JP, García-López J-J, Reinhoudt DN, Crego-Calama M, García-Parajó MF, van Hulst NF (2006) Effect of disorder on ultrafast exciton dynamics probed by single molecule spectroscopy. Phys Rev Lett 97:216403PubMedCrossRefGoogle Scholar
  9. 9.
    Métivier R, Nolde F, Müllen K, Basché T (2007) Electronic excitation energy transfer between two single molecules embedded in a polymer host. Phys Rev Lett 98:047802PubMedCrossRefGoogle Scholar
  10. 10.
    Schindler F, Lupton JM, Feldmann J, Scherf U (2004) A universal picture of chromophores in pi-conjugated polymers derived from single molecule spectroscopy. Proc Natl Acad Sci U S A 101:14695–14700PubMedCrossRefGoogle Scholar
  11. 11.
    Nirmal M, Dabbousi BO, Bawendi MG, Macklin JJ, Trautman JK, Harris TD, Brus LE (1996) Fluorescence intermittency in single cadmium selenide nanocrystals. Nature 383:802–804CrossRefGoogle Scholar
  12. 12.
    Verberk R, van Oijen AM, Orrit M (2002) Simple model for the power-law blinking of single semiconductor nanocrystals. Phys Rev B 66:233202CrossRefGoogle Scholar
  13. 13.
    Bayer M, Hawrylak P, Hinzer K, Fafard S, Korkusinski M, Wasilewski ZR, Stern O, Forchel A (2001) Coupling and entangling of quantum states in quantum dot molecules. Science 291:451–453PubMedCrossRefGoogle Scholar
  14. 14.
    Nguyen TA, Mackowski S, Jackson HE, Smith LM, Dobrowolska M, Furdyna J, Fronc K, Wrobel J, Kossut J, Karczewski G (2004) Resonant spectroscopy of II-VI self-assembled quantum dots: excited states and exciton-LO phonon coupling. Phys Rev B 70:125306CrossRefGoogle Scholar
  15. 15.
    Rutkauskas D, Novoderezhkin V, Cogdell RJ, van Grondelle R (2005) Fluorescence spectroscopy of conformational changes of single LH2 complexes. Biophys J 88:422–435PubMedCrossRefGoogle Scholar
  16. 16.
    van Oijen AM, Ketelaars M, Köhler J, Aartsma TJ, Schmidt J (1999) Unraveling the electronic structure of individual photosynthetic pigment–protein complexes. Science 285:400–402PubMedCrossRefGoogle Scholar
  17. 17.
    Mackowski S, Wörmke S, Brotosudarmo THP, Jung C, Hiller RG, Scheer H, Bräuchle C (2007) Energy transfer in reconstituted peridinin–chlorophyll–protein complexes: ensemble and single molecule spectroscopy studies. Biophys J 93:3249–3258PubMedCrossRefGoogle Scholar
  18. 18.
    Wörmke S, Mackowski S, Jung C, Ehrl M, Zumbusch A, Brotosudarmo THP, Scheer H, Hofmann E, Hiller RG, Bräuchle C (2007) Monitoring fluorescence of individual chromophores in peridinin–chlorophyll–protein complex using single molecule spectroscopy. Biochim Biophys Acta - Bioenergetics 1767:956–964CrossRefGoogle Scholar
  19. 19.
    Becker K, Lupton JM, Müller J, Rogach AL, Talapin DV, Weller H, Feldmann J (2006) Electrical control of Förster energy transfer. Nature Mat 5:777–781CrossRefGoogle Scholar
  20. 20.
    Cotlet M, Vosch T, Habuchi S, Weil T, Mullen K, Hofkens J, De Schryver F (2005) Probing intramolecular Forster resonance energy transfer in a naphthaleneimide-peryleneimide-terrylenediimide-based dendrimer by ensemble and single-molecule fluorescence spectroscopy. J Am Chem Soc 127:9760–9768PubMedCrossRefGoogle Scholar
  21. 21.
    Hofmann C, Aartsma TJ, Michel H, Köhler J (2003) Direct observation of tiers in the energy landscape of a chromoprotein: a single-molecule study. Proc Natl Acad Sci USA 100:15534–15538PubMedCrossRefGoogle Scholar
  22. 22.
    Jung C, Hellriegel C, Platschek B, Wöhrle D, Bein T, Michaelis J, Bräuchle C (2007) Simultaneous measurement of orientational and spectral dynamics of single molecules in nanostructured host–guest materials. J Am Chem Soc 129:5570–5579PubMedCrossRefGoogle Scholar
  23. 23.
    Lippitz M, Kulzer F, Orrit M (2005) Statistical evaluation of single nano-object fluorescence. Chem Phys Phys Chem 6:770–789Google Scholar
  24. 24.
    Vallée RAL, Van Der Auweraer M, De Schryver FC, Beljonne D, Orrit M (2005) A microscopic model for the fluctuations of local field and spontaneous emission of single molecules in disordered media. Chem Phys Phys Chem 6:81–91Google Scholar
  25. 25.
    Kiraz A, Ehrl M, Bräuchle C, Zumbusch A (2004) Ultralong coherence times in the purely electronic zero-phonon line emission of single molecules. Appl Phys Lett 85:920–922CrossRefGoogle Scholar
  26. 26.
    Kiraz A, Ehrl M, Bräuchle C, Zumbusch A (2003) Low temperature single molecule spectroscopy using vibronic excitation and dispersed fluorescence detection. J Chem Phys 11:8:10821–10824CrossRefGoogle Scholar
  27. 27.
    Marbeuf A, Brown R (2006) Molecular dynamics in n-alkanes: premelting phenomena and rotator phases. J Chem Phys 124:054901PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Sebastian Mackowski
    • 1
    • 2
    Email author
  • Stephan Wörmke
    • 1
  • Moritz Ehrl
    • 1
  • Christoph Bräuchle
    • 1
  1. 1.Department of Chemistry and BiochemistryLudwig-Maximilian-University MunichMunichGermany
  2. 2.Institute of Physics Nicolaus Copernicus University TorunTorunPoland

Personalised recommendations