Advertisement

Journal of Fluorescence

, Volume 18, Issue 3–4, pp 611–617 | Cite as

Single Molecule Fluorescence of Native and Refolded Peridinin–Chlorophyll–Protein Complexes

  • Stephan Wörmke
  • Sebastian MackowskiEmail author
  • Andreas Schaller
  • Tatas H. P. Brotosudarmo
  • Silke Johanning
  • Hugo Scheer
  • Christoph Bräuchle
Original Paper

Abstract

Single molecule spectroscopy was applied to study the optical properties of native and refolded peridinin–chlorophyll–protein (PCP) complexes. The native system is a trimer with six chlorophyll a (Chl a) molecules, while the refolded one contains two Chl a and resembles structurally and spectroscopically the PCP monomer. The fluorescence emission of single PCP complexes strongly broadens with increasing excitation power. Simultaneously, the distribution of fluorescence maximum frequencies is also broadened. These spectral changes are attributed to photoinduced conformational changes of the protein that influence the fluorescence of embedded chromophores. Comparison of fluorescence intensities measured for PCP complexes in two different solvents indicates that the native PCP trimers are preserved in EDTA Tris buffer, while in PVA polymer matrix only monomers are stable.

Keywords

Single molecule spectroscopy Peridinin–chlorophyll–protein Protein dynamics Reconstitution 

Notes

Acknowledgment

The authors thank Eckhard Hofmann for many fruitful discussions. The work was supported by the Deutsche Forschungsgemeinschaft, Bonn (SFB 533, projects A6 and B7) and “Center for Integrated Protein Science Munich (CiPSM)”. S. M. acknowledges financial support from the Alexander von Humboldt Foundation.

References

  1. 1.
    Frauenfelder H (2003) Complexity of proteins. In: Physics of biological systems: from molecules to species. Springer, Heidelberg, GermanyGoogle Scholar
  2. 2.
    Polivka T, Sundström V (2004) Ultrafast dynamics of carotenoid excited states—from solution to natural and artificial system. Chem Rev 104:2021–2071PubMedCrossRefGoogle Scholar
  3. 3.
    Moerner WE (2002) A dozen years of single-molecule spectroscopy in physics, chemistry, and biophysics. J Phys Chem B 106:910–927CrossRefGoogle Scholar
  4. 4.
    Hofmann C, Aartsma TJ, Michel H, Köhler J (2003) Direct observation of tiers in the energy landscape of a chromoprotein: a single-molecule study. Proc Natl Acad Sci U S A 100:15534–15538PubMedCrossRefGoogle Scholar
  5. 5.
    Rutkauskas D, Novoderezhkin V, Cogdell RJ, van Grondelle R (2005) Fluorescence spectroscopy of conformational changes of single LH2 complexes. Biophys J 88:422–435PubMedCrossRefGoogle Scholar
  6. 6.
    Valkunas L, Janusonisa J, Rutkauskas D, van Grondelle R (2007) Protein dynamics revealed in the excitonic spectra of single LH2 complexes. J Lumin 127:269–275CrossRefGoogle Scholar
  7. 7.
    Hofmann E, Wrench PM, Sharples FP, Hiller RG, Welte W, Diederichs K (1996) Structural basis of light harvesting by carotenoids: peridinin chlorophyll-a protein from Amphidinium carterae. Science 272:788–1791CrossRefGoogle Scholar
  8. 8.
    Kleima FJ, Wendling M, Hofmann E, Peterman EJ, van Grondelle R, van Amerongen H (2000) Peridinin chlorophyll a protein: relating structure and steady-state spectroscopy. Biochemistry 39:5184–5195PubMedCrossRefGoogle Scholar
  9. 9.
    Wörmke S, Mackowski S, Brotosudarmo THP, Bräuchle C, Garcia A, Braun P, Scheer H, Hofmann E (2007) Detection of single biomolecule fluorescence excited through energy transfer: application to light-harvesting complexes. Appl Phys Lett 90:193901CrossRefGoogle Scholar
  10. 10.
    Wörmke S, Mackowski S, Brotosudarmo THP, Jung C, Zumbusch A, Ehrl M, Scheer H, Hofmann E, Hiller RG, Bräuchle C (2007) Monitoring fluorescence of individual chromophores in peridinin–chlorophyll–protein complex using single molecule spectroscopy. Biochim Biophys Acta 1767:956–964PubMedCrossRefGoogle Scholar
  11. 11.
    Kleima FJ, Hofmann E, Gobets B, Van Stokkum IHM, van Grondelle R, Diederich K, van Amerongen H (2000) Förster excitation energy transfer in peridinin–chlorophyll a–protein. Biophys J 78:344–353PubMedGoogle Scholar
  12. 12.
    Miller DJ, Catmull J, Puskeiler R, Tweedale H, Sharples FP, Hiller RG (2005) Reconstitution of the peridinin–chlorophyll a protein (PCP): evidence for functional flexibility in chlorophyll binding. Photosynth Res 86:229–240PubMedCrossRefGoogle Scholar
  13. 13.
    Brotosudarmo THP, Hofmann E, Hiller RG, Wörmke S, Mackowski S, Zumbusch A, Bräuchle C, Scheer H (2006) Peridinin–chlorophyll–protein reconstituted with chlorophyll mixtures: preparation, bulk and single molecule spectroscopy. FEBS Lett 580:5257–5262PubMedCrossRefGoogle Scholar
  14. 14.
    Mackowski S, Wörmke S, Brotosudarmo THP, Jung C, Hiller RG, Scheer H, Bräuchle C (2007) Energy transfer in reconstituted peridinin–chlorophyll–protein complexes: ensemble and single molecule spectroscopy studies. Biophys J 93:3249–3258PubMedCrossRefGoogle Scholar
  15. 15.
    Polívka T, Pascher T, Sundström V, Hiller RG (2005) Tuning energy transfer in the peridinin–chlorophyll complex by reconstitution with different chlorophylls. Photosynth Res 86:217–227PubMedCrossRefGoogle Scholar
  16. 16.
    Mackowski S, Wörmke S, Brotosudarmo THP, Scheer H, Bräuchle C (2008) Fluorescence spectroscopy of reconstituted peridinin–chlorophyll–protein complexes. Photosynth Res 95:253–260PubMedCrossRefGoogle Scholar
  17. 17.
    Law CJ, Cogdell RJ (1998) The effect of chemical oxidation on the fluorescence of the LH1 (B880) complex from the purple bacterium Rhodobium marimum. FEBS Lett 432:27–30PubMedCrossRefGoogle Scholar
  18. 18.
    Spezia R, Aschi M, Nola AD, Valentin MD, Carbonera D, Amadei A (2003) The effect of protein conformational flexibility on the electronic properties of a chromophore. Biophys J 84:2805–2813PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Stephan Wörmke
    • 1
  • Sebastian Mackowski
    • 2
    Email author
  • Andreas Schaller
    • 1
  • Tatas H. P. Brotosudarmo
    • 1
    • 3
  • Silke Johanning
    • 4
  • Hugo Scheer
    • 3
  • Christoph Bräuchle
    • 1
  1. 1.Department of Chemistry and Biochemistry and Center for NanoscienceLudwig-Maximilian-University MunichMunichGermany
  2. 2.Institute of PhysicsNicolaus Copernicus UniversityTorunPoland
  3. 3.Department of Biology 1Ludwig-Maximilians-UniversityMünchenGermany
  4. 4.Department of Biology and BiotechnologyRuhr-University BochumBochumGermany

Personalised recommendations