Advertisement

Journal of Fluorescence

, Volume 18, Issue 2, pp 365–373 | Cite as

Application of the Doehlert Design to Optimize the Signal Obtained in Photochemically Induced Fluorescence for the Determination of Eight Phenylureas

  • M. D. Gil-García
  • M. Martínez-Galera
  • P. Parrilla-Vázquez
  • A. R. Mughari
  • I. M. Ortiz-Rodríguez
Original Paper

Abstract

This work describes the optimization of a photochemically induced method for the detection of eight phenylureas has been developed by response surface methodology (RSM). These pesticides do not show native fluorescence but they were photolyzed into strongly fluorescent photoproducts under UV irradiation. The effect of the main variables affecting the yield of the photoderivatization reaction, and hence the fluorescence intensity, such as solvent, UV irradiation time and pH were optimized for each pesticide. A Doehlert design was applied in order to obtain maximum intensity fluorescence using response surface methodology. In general, a maximum was found for all pesticides using MeOH as organic solvent, except for diuron, whereas the effect of pH and irradiation time was different, according to each pesticide. Finally, the addition of β-cyclodextrin upon the photochemically induced fluorescence intensity was investigate. The fluorescence intensity was only improved for monolinuron at a concentration of 4 × 10−3 M of β-cyclodextrin.

Keywords

Phenylurea herbicides Photochemically induced fluorescence Optimization Doehlert design 

References

  1. 1.
    Leon Gonzalez ME, Townshend A (1991) Determination of organophosphorus and carbamate pesticide standards by liquid-chromatography with detection by inhibition of immobilized acetylcholinesterase. J Chromatogr 539:47–54CrossRefGoogle Scholar
  2. 2.
    Gerecke AC, Tixier C, Bartels T, Schwarzenbach RP, Müller SR (2001) Determination of phenylurea herbicides in natural waters at concentrations below 1 ng l−1 using solid-phase extraction, derivatization, and solid-phase microextraction gas chromatography mass spectrometry. J Chromatogr A 930(1–2):9–19PubMedCrossRefGoogle Scholar
  3. 3.
    Peña F, Cárdenas S, Gallego M, Valcácel M (2002) Analysis of phenylurea herbicides from plants by GC/MS. Talanta 56(4):727–734CrossRefGoogle Scholar
  4. 4.
    Martin Esteban A, Fernández P, Stevenson D, Cámara C (1997) Mixed immunosorbent for selective on-line trace enrichment and liquid chromatography of phenylurea herbicides in environmental waters. Analyst 122(10):1113–1117PubMedCrossRefGoogle Scholar
  5. 5.
    Pichon V, Bouzige M, Hennion MC (1998) New trends in environmental trace-analysis of organic pollutants: class-selective immunoextraction and clean-up in one step using immunosorbents. Anal Chim Acta 376(1):21–35CrossRefGoogle Scholar
  6. 6.
    Lin HH, Sung YH, Huang SD (2003) Solid-phase microextraction coupled with high-performance liquid chromatography for the determination of phenylurea herbicides in aqueous samples. J Chromatogr A 1012(1):57–66PubMedCrossRefGoogle Scholar
  7. 7.
    van der Heeft E, Dijkman E, Baumann RA, Hogendoorn EA (2000) Comparison of various liquid chromatographic methods involving UV and atmospheric pressure chemical ionization mass spectrometric detection for the efficient trace analysis of phenylurea herbicides in various types of water samples. J Chromatogr A 879(1):39–50PubMedCrossRefGoogle Scholar
  8. 8.
    Hogenboom AC, Hoffman MP, Jolly DA, Niessen WMA, Brinkman UAT (2000) On-line dual-precolumn-based trace enrichment for the determination of polar and acidic microcontaminants in river water by liquid chromatography with diode-array UV and tandem mass spectrometric detection. J Chromatogr A 885(1–2):377–388PubMedCrossRefGoogle Scholar
  9. 9.
    Aaron JJ (1993) Molecular luminescence spectroscopy: methods and applications. Wiley, New YorkGoogle Scholar
  10. 10.
    Vilchez JL, El-Khattabi R, Blanc R, Navalon A (1998) Photochemical-fluorimetric method for the determination of the insecticide imidacloprid in water samples. Anal Chim Acta 371(2–3):247–253CrossRefGoogle Scholar
  11. 11.
    Coly A, Aaron JJ (1988) Fluorimetric analysis of pesticides: methods, recent developments and applications. Talanta 46(5):815–843CrossRefGoogle Scholar
  12. 12.
    de la Peña AM, Mahedero MC, Bautista Sánchez A (2002) High-performance liquid chromatographic determination of phenylureas by photochemically induced fluorescence detection. J Chromatogr A 950(1–2):287–291Google Scholar
  13. 13.
    Eremin SA, Laassis B, Aaron JJ (1996) Photochemical-fluorimetric method for the determination of total chlorophenoxyacid herbicides, Talanta 43(3):295–301CrossRefGoogle Scholar
  14. 14.
    Gil García MD, Martínez Galera M, López López T, Martínez Vidal JL, Mahedero MC, Salinas F (2001) Photochemical-spectrofluorimetric method for the determination of benzoylurea insecticides: applications in river water samples and in technical formulations. Talanta 53(5):915–925CrossRefGoogle Scholar
  15. 15.
    Vilchez JL, Valencia MC, Navalón A, Molinero-Morales B, Capitán-Vallvey LF (2001) Flow injection analysis of the insecticide imidacloprid in water samples with photochemically induced fluorescence detection. Anal Chim Acta 439(2):299–305CrossRefGoogle Scholar
  16. 16.
    Doehlert DH (1970) Uniform shell designs, Royal Stat Soc Ser C Appl Stat 19(3):231–238Google Scholar
  17. 17.
    Araujo PW, Brereton RG (1996) Experimental design. 2. Optimization, Trends Anal Chem 15(2):63–70CrossRefGoogle Scholar
  18. 18.
    Hu Y, Massart DL (1989) Uniform shell designs for optimization in reversed-phase liquid chromatography. J Chromatogr 485:311–323CrossRefGoogle Scholar
  19. 19.
    Ferreira SLC, dos Santos WNL, Quintella CM, Neto BB, Bosque Sendra JM (2004) Doehlert matrix: a chemometric tool for analytical chemistry—review. Talanta 63(4):1061–1067CrossRefGoogle Scholar
  20. 20.
    dos Santos WNL, Santos CMC, Ferreira SLC (2003) Application of three-variables Doehlert matrix for optimisation of an on-line pre-concentration system for zinc determination in natural water samples by flame atomic absorption spectrometry. Microchem J 75(3):211–221CrossRefGoogle Scholar
  21. 21.
    García Campaña AM, Cuadros Rodríguez L, Lupiañez González A, Alés Barrero F, Román Ceba M (1997) Sequential response surface methodology for multioptimization in analytical chemistry with three-variable Doehlert designs. Anal Chim Acta 348(1–3):237–246CrossRefGoogle Scholar
  22. 22.
    Korn MGA, dos Santos WPC, Korn M, Ferreira SLC (2005) Optimisation of focused-microwave assisted digestion procedure for Kjeldahl nitrogen determination in bean samples by factorial design and Doehlert design. Talanta 65(3):710–715CrossRefGoogle Scholar
  23. 23.
    Santelli RE, Bezerra MA, de SantaAna OD, Cassella RJ, Ferreira SLC (2006) Multivariate technique for optimization of digestion procedure by focussed microwave system for determination of Mn, Zn and Fe in food samples using FAAS. Talanta 68(4):1083–1088CrossRefGoogle Scholar
  24. 24.
    Box GEP, Hunter WG, Hunter JS (1978) Statistics for experimenters. Wiley, New YorkGoogle Scholar
  25. 25.
    Valderrama MJ (1989) Métodos matemáticos aplicados a las Ciencias Experimentales, Pirâmide, MadridGoogle Scholar
  26. 26.
    Mahedero MC, Muñoz de la Peña A, Bautista A, Aaron JJ (2002) J Incl Phenom Macrocl Chem 42:61–70CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • M. D. Gil-García
    • 1
  • M. Martínez-Galera
    • 1
  • P. Parrilla-Vázquez
    • 1
  • A. R. Mughari
    • 1
  • I. M. Ortiz-Rodríguez
    • 2
  1. 1.Department of Hydrogeology and Analytical ChemistryUniversity of AlmeríaAlmeríaSpain
  2. 2.Department of Statistics and Applied MathematicsUniversity of AlmeríaAlmeríaSpain

Personalised recommendations