Journal of Fluorescence

, Volume 18, Issue 2, pp 329–337 | Cite as

Tripolyphosphate as Precursor for REPO4:Eu3+ (RE = Y, La, Gd) by a Polymeric Method

Original Paper


A modification of the Pechini method was applied to obtain luminescent rare earth orthophosphates. The developed synthetic route is based on the ability of the tripolyphosphate anion (\({\text{P}}_3 {\text{O}}_{10}^{5 - } \)) to act both as a complexing agent and as an orthophosphate precursor. Heating of aqueous solutions containing RE3+, Eu3+, \({\text{P}}_3 {\text{O}}_{10}^{5 - } \), citric acid, and ethylene glycol led to polymeric resins. The ignition of these resins at different temperatures yielded luminescent orthophosphates. The produced nanosized phosphors (YPO4:Eu3+, (Y,Gd)PO4:Eu3+, and LaPO4:Eu3+) were analyzed by infrared and luminescence spectroscopies, X-ray diffractometry, and scanning electron microscopy.


Luminescence Rare earth Phosphates Europium Pechini 


  1. 1.
    Feldman C, Jüstel T, Ronda C, Schmidt P (2003) Inorganic luminescent materials: 100 years of research and application. Adv Funct Mater 13:511–516CrossRefGoogle Scholar
  2. 2.
    Jüstel T, Nikol H, Ronda C (1998) New developements in the field of luminescent materials for lighting and displays. Angew Chem Int Ed 37:3084–3103CrossRefGoogle Scholar
  3. 3.
    Hezel A, Ross SD (1967) X-ray powder data and cell dimensions of some rare earth orthophosphates. J Inorg Nucl Chem 29:2085–2089CrossRefGoogle Scholar
  4. 4.
    Mooney RCL (1950) X-ray diffraction study of cerous phosphate and related crystals. I. Hexagonal modification. Acta Crystallogr 3:337–340CrossRefGoogle Scholar
  5. 5.
    Kijkowska R, Cholewka E, Duszak B (2003) X-ray diffraction and Ir-absorption characteristics of lanthanide orthophosphates obtained by crystallization from phosphoric acid solution. J Mater Sci 38:223–228CrossRefGoogle Scholar
  6. 6.
    Serra OA, Giesbrecht E (1968) Lanthanum, cerium, and praseodymium trimetaphosphates. J Inorg Nucl Chem 30:793–799CrossRefGoogle Scholar
  7. 7.
    Gushikem Y, Giesbrecht E, Serra OA (1972) Tri- and tetrametaphosphates of lanthanidic elements. J Inorg Nucl Chem 34:2179–2187CrossRefGoogle Scholar
  8. 8.
    Tuan DC, Olazcuaga R, Guillen F, Garcia A, Moine B, Fouassier C (2005) Luminescent properties of Eu3+-doped yttrium or gadolinium phosphates. J Phys IV 123:259–263CrossRefGoogle Scholar
  9. 9.
    Buissette V, Moreau M, Gacoin T, Boilot J-P, Chane-Ching J-Y, Le Mercier T (2004) Colloidal synthesis of luminescent rhabdophane LaPO4:Ln3+ xH2O (Ln = Ce, Tb, Eu; x ≈ 0.7) nanocrystals. Chem Mater 16:3767–3773CrossRefGoogle Scholar
  10. 10.
    Riwotzki K, Meyssamy H, Kornowski A, Haase M (2000) Liquid-phase synthesis of doped nanoparticles: colloids of luminescing LaPO4:Eu and CePO4:Tb particles with a narrow particle size distribution. J Phys Chem B 104:2824–2828CrossRefGoogle Scholar
  11. 11.
    Brown SS, Im H-J, Rondinone AJ, Dai S (2005) Facile, alternative synthesis of lanthanum phosphate nanocrystals by ultrasonication. J Colloid Interface Sci 292:127–132PubMedCrossRefGoogle Scholar
  12. 12.
    Lenggoro IW, Xia B, Mizushima H, Okuyama K, Kijima N (2001) Synthesis of LaPO4:Ce,Tb phosphor particles by spray pyrolisis. Mater Lett 50:92–96CrossRefGoogle Scholar
  13. 13.
    Serra OA, Campos RM (1991) Síntese e propriedades luminescentes de fosfatos de európio (III). Quim Nova 14(3):159–161 (in Portuguese)Google Scholar
  14. 14.
    Porcher P (1999) In: Saez R, Caro PA (eds) Rare earths–Chapter 3: Optical Properties. Editorial Complutense, MadridGoogle Scholar
  15. 15.
    Pechini M (1967); U.S. Patent; 3,300,697; July 11Google Scholar
  16. 16.
    Serra OA, Cicillini SA, Ishiki RR (2000) A new procedure to obtain Eu3+ doped oxide and oxosalt phosphors. J Alloys Compd 303–304:316–319CrossRefGoogle Scholar
  17. 17.
    Serra OA, Severino VP, Calefi PS, Cicillini SA (2001) The blue phosphor Sr2CeO4 synthesized by Pechini’s method. J Alloys Compd 323–324:667–669CrossRefGoogle Scholar
  18. 18.
    Pires AM, Heer S, Güdel HU, Serra OA (2006) Er, Yb doped yttrium based nanosized phosphors: Particle size, “host lattice” and doping ion concentration effects on upconversion efficiency. J Fluoresc 16(3):461–468PubMedCrossRefGoogle Scholar
  19. 19.
    Corbridge DEC, Lowe J (1954) The infra-red spectra of some inorganic phosphorus compounds. J Chem Soc 493–502,
  20. 20.
    Blasse G, Grambmaier BC (1994) Luminescent materials. Springer-Verlag, BerlinGoogle Scholar
  21. 21.
    Bünzli J-CG (1989) In: Bünzli J-CG, Choppin GR (eds) Lanthanide probes in life, chemical and earth sciences–Chapter 7: Luminescent probes. Elsevier, AmsterdamGoogle Scholar
  22. 22.
    Forsberg JH (1973) Complexes of lanthanide (III) ions with nitrogen donor ligands. Coord Chem Rev 10:195–226CrossRefGoogle Scholar
  23. 23.
    Wang Z, Liang H, Gong M, Su Q (2007) Luminescence investigation of Eu3+ activated double molybdates red phosphors with scheelite structure. J Alloys Compd 432:308–312CrossRefGoogle Scholar
  24. 24.
    de Mello Donegá C, Alves Júnior S, de Sá GF (1997) Synthesis, luminescence and quantum yields of Eu(III) mixed complexes with 4,4,4-trifluoro-1-phenyl-1,3-butanedione and 1,10-phenantroline-N-oxide. J Alloys Compd 250:422–426CrossRefGoogle Scholar
  25. 25.
    Kodaira CA, Brito HF, Malta OL, Serra OA (2001) Luminescence and energy transfer of the europium (III) tungstate obtained via the Pechini method. J Lumin 101:11–21CrossRefGoogle Scholar
  26. 26.
    Santa-Cruz PA, Teles FS (2003) Spectra Lux Software v.2.0, Ponto Quântico Nanodispositivos/RENAMIGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Laboratório de Terras Raras, Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão PretoUniversidade de São PauloRibeirão PretoBrazil

Personalised recommendations