Journal of Fluorescence

, Volume 18, Issue 1, pp 75–85

Fluorescence Characterization of the Hydrophobic Pocket of Cyclophilin B

Original Paper

Abstract

Human cyclophilin B is a monomeric protein that contains two tryptophan residues, Trp104 and 128. Trp128-residue belongs to the binding site of cyclosporin A and is the homologous of Trp 121 in CyPA, while Trp104 residue belongs to the hydrophobic pocket. In the present work, we studied the dynamics of Trp residue(s) of cyclophilin B and of the CyPBw128A mutant and of TNS-mutant complex. Our results showed that Trp-104 and TNS show restricted motions within their environments and that energy transfer between the two fluorophores is occurring.

Keywords

Cyclophilin B Trp residues 2-p-toluidinylnaphthalene-6-sulfonate (TNS) Red-edge excitation spectra Fluorescence anisotropy Fluorescence lifetimes Quantum yield Emission to excitation ratio 

Abbreviations

a.u.

arbitrarily scaled units

CsA

cyclosporin A

hCyPB

human cyclophilin B

References

  1. 1.
    Galat A (1993) Peptidylproline cistrans-isomerases: immunophilins. Eur J Biochem 216:689–707PubMedCrossRefGoogle Scholar
  2. 2.
    Fischer G, Wittmann-Liebold B, Lang K, Kiefhaber T, Schmid FX (1989) Cyclophilin and peptidyl-prolyl cistrans isomerase are probably identical proteins. Nature 337:476–478PubMedCrossRefGoogle Scholar
  3. 3.
    Price ER, Zydowsky LD, Jin M, Baker CH, McKeon, FD, Walsh CT (1991) Human cyclophilin B: A second cyclophilin gene encodes a peptidyl–prolyl isomerase with a signal sequence. Proc Natl Acad Sci 88:1903–1907PubMedCrossRefGoogle Scholar
  4. 4.
    Friedman J, Weissman I (1991) Two cytoplasmic candidates for immunophilin action are revealed by affinity for a new cyclophilin: one in the presence and one in the absence of CsA. Cell 66:799–806PubMedCrossRefGoogle Scholar
  5. 5.
    Hasel KW, Glass JR, Godbout M, Sutcliffe JG (1991) An endoplasmic reticulum-specific cyclophilin. Mol Cell Biol 11:3484–3491PubMedGoogle Scholar
  6. 6.
    Spik G, Haendler B, Delmas O, Mariller C, Chamoux M, Maes P, Tartar A, Montreuil J, Stedman K, Kocher HP (1991) A novel secreted cyclophilin-like protein (SCYLP). J Biol Chem 266:10735–10738PubMedGoogle Scholar
  7. 7.
    Connern CP, Halestrap AP (1992) Purification and N-terminal sequencing of peptidyl–prolyl cistrans-isomerase from rat liver mitochondrial matrix reveals the existence of a distinct mitochondrial cyclophilin. Biochem J 284:381–385PubMedGoogle Scholar
  8. 8.
    Kay JE (1992) Mitochondrial cyclophilins. Biochem J 288:1074–1075PubMedGoogle Scholar
  9. 9.
    Montague JW, Hughes FM Jr., Cidlowski, JA (1997) Native recombinant cyclophilins A, B, and C degrade DNA independently of peptidylprolyl cistrans isomerase activity: potential roles of cyclophilins in apoptosis. J Biol Chem 272:6677–6684PubMedCrossRefGoogle Scholar
  10. 10.
    Woodfield K, Ruck A, Brdiczka D, Halestrap AP (1998) Direct demonstration of a specific interaction between cyclophilin-D and the adenine nucleotide translocase confirms their role in the mitochondrial permeability transition. Biochem J 336:287–290PubMedGoogle Scholar
  11. 11.
    Fisher G, Bang H (1985) The refolding of urea-denatured ribonuclease A is catalyzed by peptidyl–prolyl cistrans isomerase. Biochim Biophys Acta 828:39–42Google Scholar
  12. 12.
    Schmid FX, Mayr LM, Mücke M, Schönbrunner, ER (1993) Prolyl isomerases: role in protein folding. Adv Protein Chem 44:25–66PubMedCrossRefGoogle Scholar
  13. 13.
    Handschumacher RE, Harding MW, Rice J, Drugge RJ (1984) Cyclophilin: a specific cytosolic binding protein for cyclosporin A. Science 226:544–547PubMedCrossRefGoogle Scholar
  14. 14.
    Carpentier M, Allain F, Haendler B, Denys A, Mariller C, Benaissa M, Spik G (1999) Two distinct regions of cyclophilin B are involved in the recognition of a functional receptor and of glycosaminoglycans on T lymphocytes. J Biol Chem 274:10990–10998PubMedCrossRefGoogle Scholar
  15. 15.
    Mikol V, Kallen J, Walkinshaw MD (1994) X-ray structure of a cyclophilin B/cyclosporin complex: comparison with cyclophilin A and delineation of its calcineurin-binding domain. Proc Natl Acad Sci USA 91:5183–5186PubMedCrossRefGoogle Scholar
  16. 16.
    Golbik R, Eble J, Ries A, Kuhn K (2000) The spatial orientation of the essential amino acid residues arginine and aspartate within the α1 β1 integrin recognition site of collagen IV has been resolved using fluorescence resonance energy transfer. J Mol Biol 297:501–509PubMedCrossRefGoogle Scholar
  17. 17.
    Dong WJ, Robinson JM, Xing J, Umeda PK, Cheung HC (2000) An interdomain distance in cardiac troponin C determined by fluorescence spectroscopy. Protein Sci 9:280–289PubMedCrossRefGoogle Scholar
  18. 18.
    Albani JR (1996) Dynamics of Lens culinaris agglutinin studied by red-edge excitation spectra and anisotropy measurements of 2-p-toluidinylnaphthaline-6-sulfonate (TNS) and of tryptophan residues. J Fluoresc 6:199–208CrossRefGoogle Scholar
  19. 19.
    Mikes V, Milat M-L, Ponchet M, Panabières F, Ricci P, Blein J-P (1998) Elicitins, proteinaceous elicitors of plant defense, are a new class of sterol carrier proteins. Biochem Biophys Res Commun 245:133–139PubMedCrossRefGoogle Scholar
  20. 20.
    Chen RF (1967) Fluorescence quantum yields of tryptophan and tyrosine. Anal Lett 1:35–42Google Scholar
  21. 21.
    Lakowicz JR, Cherek H (1981) Phase-sensitive fluorescence spectroscopy. A new method to resolve fluorescence lifetimes or emission spectra of components in a mixture of fluorophores. J Biochem Biophys Methods 5:19–35PubMedCrossRefGoogle Scholar
  22. 22.
    D’Auria S, Gryczynski Z, Gryczynski I, Rossi M, Lakowicz JR (2000) A protein biosensor for lactate. Analytical Biochemistry 283:83–88PubMedCrossRefGoogle Scholar
  23. 23.
    Sanger F, Nicklen F, Coulson, AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467PubMedCrossRefGoogle Scholar
  24. 24.
    Allain F, Spik G (1995) In: Haeberli A (ed) Human protein data. VCH Verlagspes, mbH, WeinheimGoogle Scholar
  25. 25.
    McClure WO, Edelman GM (1966) Fluorescent probes for conformational states of proteins. I. Mechanism of fluorescence of 2-p-toluidinylnaphthalene-6-sulfonate, a hydrophobic probe. Biochemistry 5:1908–1918PubMedCrossRefGoogle Scholar
  26. 26.
    Lakowicz JR (1999) Principles of fluorescence spectroscopy. Plenum, New YorkGoogle Scholar
  27. 27.
    Albani JR (2007) Principles and applications of fluorescence spectroscopy. Blackwell, OxfordGoogle Scholar
  28. 28.
    Parker CA, Rees WT (1960) Correction of fluorescence spectra and measurement of fluorescence quantum efficiency. Analyst 85:587–600CrossRefGoogle Scholar
  29. 29.
    Burstein EA, Vedenkina NS, Ivkova MN (1973) Fluorescence and the location of tryptophan residues in protein molecules. Photochem Photobiol 18:263–279PubMedCrossRefGoogle Scholar
  30. 30.
    Albani JR (1997) Binding effect of progesterone on the dynamics of α1-acid glycoprotein. Biochim Biophys Acta 1336:349–359PubMedGoogle Scholar
  31. 31.
    Demchenko AP (1982) On the nanosecond mobility in proteins. Edge excitation fluorescence red shift of protein-bound 2-(p-toluidinylnaphthalene)-6-sulfonate. Biophys Chem 15:101–109PubMedCrossRefGoogle Scholar
  32. 32.
    Weber G (1952) Polarization of the fluorescence of macromolecules. 1. Theory and experimental method. Biochem J 51:145–155PubMedGoogle Scholar
  33. 33.
    Albani JR (2004) Structure and dynamics of macromolecules: absorption and fluorescence studies. Elsevier, AmsterdamGoogle Scholar
  34. 34.
    Lakowicz JR, Gratton E, Cherek H, Maliwal BP, Laczko G (1984) Determination of time-resolved fluorescence emission spectra and anisotropies of a fluorophore–protein complex using frequency-domain phase-modulation fluorometry. J Biol Chem 259:10967–10972PubMedGoogle Scholar
  35. 35.
    Albani J (1992) Motions studies of the human α1-acid glycoprotein (orosomucoid) followed by red-edge excitation spectra and polarization of 2-p-toluidinylnaphthalene-6-sulfonate (TNS) and of tryptophan residues. Biophys Chem 44:129–137PubMedCrossRefGoogle Scholar
  36. 36.
    Albani JR (2007) New insights in the interpretation of tryptophan fluorescence: origin of the fluorescence lifetime and characterization of a new fluorescence parameter in proteins: the emission to excitation ratio. J Fluoresc 17:406–417PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Laboratoire de Biophysique MoléculaireUniversité des Sciences et Technologies de Lille, Bât. C6Villleneuve d’Ascq CédexFrance
  2. 2.Unité de Glycobiologie structurale et fonctionnelle, UMR n° 8576Université des Sciences et Technologies de LilleVilleneuve d’Ascq CédexFrance

Personalised recommendations