Journal of Fluorescence

, Volume 17, Issue 6, pp 655–661 | Cite as

Spectrofluorimetric Determination of Dopamine Using Chlorosulfonylthenoyltrifluoroacetone–Europium Probe

  • Xiaojing Zhu
  • Xiaoxia Ge
  • Chongqiu Jiang
Original Paper


A new spectrofluorimetric method was developed for the determination of trace amounts of dopamine (DA). Using chlorosulfonylthenoyltrifluoroacetone (CTTA)–europium ion (Eu3+) as a fluorescent probe, in a buffer solution at pH = 10.0, DA can remarkably enhance the fluorescence intensity of the CTTA-Eu3+ complex at λ = 612 nm; the enhanced fluorescence intensity of Eu3+ is proportional to the concentration of DA. Optimum conditions for the determination of DA were also investigated. The linear range and detection limit for the determination of DA were 5.0 × 10−8∼1.6 × 10−5 mol/l and 3.2 × 10−8 mol/l. This method is simple, practical and relatively free of interference from coexisting substances, and can be applied to assess DA in injection and human serum samples with good precision and accuracy.


Dopamine Chlorosulfonylthenoyltrifluoroacetone Europium Spectrofluorimetry 


  1. 1.
    Alpat S, Alpat SK, Telefoncu A (2005) A sensitive determination of dopamine in the presence of ascorbic acid using a nafion-coated clinoptilolite-modified carbon paste electrode. Anal Bioanal Chem 383:695–700PubMedCrossRefGoogle Scholar
  2. 2.
    Seckin ZE, Volkan M (2005) Flow injection fluorescence determination of dopamine using a photo induced electron transfer (PET) boronic acid derivative. Anal Chim Acta 547:104–108CrossRefGoogle Scholar
  3. 3.
    Maminski M, Olejniczak M, Chudy M, Dybko A, Brzozka Z (2005) Spectrophotometric determination of dopamine in microliter scale using microfluidic system based on polymeric technology. Anal Chim Acta 540:153–157CrossRefGoogle Scholar
  4. 4.
    da Cruz Vieira I, Fatibello-Filho O (1998) Spectrophotometric determination of methyldopa and dopamine in pharmaceutical formulations using a crude extract of sweet potato root (Ipomoea batatas (L.) Lam.) as enzymatic source. Talanta 46:559–564CrossRefGoogle Scholar
  5. 5.
    Wang HY, Xiao Y, Han J, Chang XS (2005) Simultaneous determination of dopamine and carvedilol in human serum and urine by first-order derivative fluorometry. Anal Sci 21:1281–1285PubMedCrossRefGoogle Scholar
  6. 6.
    Wang HY, Hui QS, Xu LX, Jiang JG, Sun Y (2003) Fluorimetric determination of dopamine in pharmaceutical products and urine using ethylene diamine as the fluorigenic reagent. Anal Chim Acta 497:93–99CrossRefGoogle Scholar
  7. 7.
    Wang HY, Sun Y, Tang B (2002) Study on fluorescence property of dopamine and determination of dopamine by fluorimetry. Talanta 57:899–907CrossRefGoogle Scholar
  8. 8.
    Robert F, Bert L, Denoroy L, Renaud B (1995) Capillary zone electrophoresis with laser-induced fluorescence detection for the determination of nanomolar concentrations of noradrenaline and dopamine: application to brain microdialysate analysis. Anal Chem 67:1838–1844PubMedCrossRefGoogle Scholar
  9. 9.
    Yoshitake T, Kehr J, Yoshitake S, Fujino K, Nohta H, Yamaguchi M (2004) Determination of serotonin, noradrenaline, dopamine and their metabolites in rat brain extracts and microdialysis samples by column liquid chromatography with fluorescence detection following derivatization with benzylamine and 1,2-diphenylethylenediamine. J Chromatogr B 807:177–183CrossRefGoogle Scholar
  10. 10.
    Nalewajko E, Ramırez RB, Kojlo A (2004) Determination of dopamine by flow-injection analysis coupled with luminol-hexacyanoferrate(III) chemiluminescence detection. J Pharm Biomed Anal 36:219–223PubMedCrossRefGoogle Scholar
  11. 11.
    Zhang YZ, Cai YJ, Su S (2006) Determination of dopamine in the presence of ascorbic acid by poly(styrene sulfonic acid) sodium salt/single-wall carbon nanotube Wlm modiWed glassy carbon electrode. Anal Biochem 350:285–291PubMedCrossRefGoogle Scholar
  12. 12.
    dos Reis AP, Tarley CRT, Maniasso N, Kubota LT (2005) Exploiting micellar environment for simultaneous electrochemical determination of ascorbic acid and dopamine. Talanta 67:829–835CrossRefGoogle Scholar
  13. 13.
    Raoof JB, Ojani R, Rashid-Nadimi S (2005) Voltammetric determination of ascorbic acid and dopamine in the same sample at the surface of a carbon paste electrode modified with polypyrrole/ferrocyanide films. Electrochim Acta 50:4694–4698CrossRefGoogle Scholar
  14. 14.
    Xue KH, Tao FF, Xu W, Yin SY, Liu JM (2005) Selective determination of dopamine in the presence of ascorbic acid at the carbon atom wire modified electrode. J Electroanal Chem 578:323–329CrossRefGoogle Scholar
  15. 15.
    de Toledo RA, Santos MC, Cavalheiro ETG, Mazo LH (2005) Determination of dopamine in synthetic cerebrospinal fluid by SWV with a graphite-polyurethane composite electrode. Anal Bioanal Chem 381:1161–1166PubMedCrossRefGoogle Scholar
  16. 16.
    Yang XD, Ci YX, Chang WB (1994) Time-resolved fluorescence immunoassay with measurement of a europium chelate in solution: dissociation conditions and application for determination of cortisol. Anal Chem 66:2590–2594CrossRefGoogle Scholar
  17. 17.
    Ci YX, Yang XD, Chang WB (1995) Fluorescence labelling with europium chelate of β-diketones and application in time-resolved fluoroimmunoassays (TR-FIA). J Immunol Methods 179:233–241PubMedCrossRefGoogle Scholar
  18. 18.
    Richardson FS (1982) Terbium (III) and europium (III) ions as luminescent probes and stains for biomolecular systems. Chem Rev 82:541–552CrossRefGoogle Scholar
  19. 19.
    Peng Q, Hou FJ, Ge XX, Jiang CQ, Gong SB (2005) Fluorimetric study of the interaction between nicotinamide adenine dinucleotide phosphate and tetracycline–europium complex and its application. Anal Chim Acta 549:26–31CrossRefGoogle Scholar
  20. 20.
    Zhu XJ, Wang XL, Jiang CQ (2005) Spectrofluorimetric determination of heparin using a tetracycline–europium probe. Anal Biochem 341:299–307PubMedCrossRefGoogle Scholar
  21. 21.
    Jiang CQ, Luo L (2004) Spectrofluorimetric determination of human serum albumin using a doxycycline–europium probe. Anal Chim Acta 506:171–175CrossRefGoogle Scholar
  22. 22.
    Jiang CQ, Wang T (2004) Study of the interactions tetracycline analogues and lysozyme. Bioorg Med Chem 12:2043–2047PubMedCrossRefGoogle Scholar
  23. 23.
    China Pharmacopoeia Committee (2005) Pharmacopoeia of the People’s Republic of China, the second part. Chemical Industry Press, BeijingGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.College of Chemistry, Chemical Engineering and Materials ScienceShandong Normal UniversityJinanChina

Personalised recommendations