Journal of Fluorescence

, Volume 17, Issue 4, pp 377–382 | Cite as

Fluorescence Modulation of Acridine and Coumarin Dyes by Silver Nanoparticles

  • Carolina A. Sabatini
  • Robson V. Pereira
  • Marcelo H. Gehlen
Original Paper


Silver nanoparticles were synthesized by chemical reduction of silver ions by sodium borohydride in the presence of poly-(N)-vinyl-2-pyrrolidone in solution of short chain alcohols. The nanoparticles are stable in 2-propanol, and the average diameter of the Ag colloid obtained in this solvent is about 6 nm. The photophysical properties of acridinium and coumarin dyes in 2-propanol are affected by the presence of silver nanoparticles. The interaction of silver nanoparticles with acridinium derivative leads to a spectral change of its intramolecular charge transfer (ICT) absorption band. The dye emission increases suddenly with the initial addition of the Ag metal nanoparticles, but at a high concentration of the colloid, static fluorescence quenching occurs with a progressive decrease of the fluorescence efficiency. Amino coumarin fluorescence is only quenched by the silver nanoparticles in solution.


Silver nanoparticles Dyes Fluorescence Plasmon resonance ICT 


  1. 1.
    Kamat PV (2002) Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J Phys Chem B 106:7729–7744CrossRefGoogle Scholar
  2. 2.
    Lakowicz JR (2001) Radiative decay engineering. Anal Biochem 298:1–24PubMedCrossRefGoogle Scholar
  3. 3.
    Lakowicz JR, Shen Y, D’Auria S, Malicka J, Fang J, Gryczynski Z, Gryczynski I (2002) Radiative decay engineering: 2. Effects of silver islands films on fluorescence intensity, lifetimes, and resonance energy transfer. Anal Biochem 301:261–277PubMedCrossRefGoogle Scholar
  4. 4.
    Lakowicz JR (2004) Radiative decay engineering 3. Surface plasmon-coupled directional emission. Anal Biochem 324:153–169PubMedCrossRefGoogle Scholar
  5. 5.
    Aslan K, Cryczynski I, Malicka J, Lakowicz JR, Geddes CD (2005) Metal-enhanced fluorescence: an emerging tool in biotechnology. Curr Opin Biotechnol 16(1):55–62PubMedCrossRefGoogle Scholar
  6. 6.
    Aslan K, Holley P, Davies L, Lakowicz JR, Geddes CD (2005) Angular-ratiometric plasmon-resonance based light scattering for bioaffinity. J Am Chem Soc 127:12115–12121PubMedCrossRefGoogle Scholar
  7. 7.
    Aslan K, Malyn SN, Geddes CD (2007) Metal-enhanced fluorescence from gold surfaces: angular dependent emission. J Fluoresc 17:7–13PubMedCrossRefGoogle Scholar
  8. 8.
    Zhang J, Matveeva E, Gryczynski I, Leonenko Z, Lakowicz JR (2005) Metal-enhanced fluoroimmunoassay on a silver film by vapor deposition. J Phys Chem B 109:7969–7975PubMedCrossRefGoogle Scholar
  9. 9.
    Zhang J, Malicka J, Gryczynski I, Lakowicz JR (2005) Surface-enhanced fluorescence of fluorescein-labeled oligonucleotides capped on silver nanoparticles. J Phys Chem B 109:7643–7648PubMedCrossRefGoogle Scholar
  10. 10.
    Corrigan TD, Guo S, Phaneuf RJ, Szmacinski H (2005) Enhanced fluorescence from periodic arrays of silver nanoparticles. J Fluoresc 15:777–784PubMedCrossRefGoogle Scholar
  11. 11.
    Haes AJ, Stuart DA, Nie S, Van Duyne RP (2004) Using solution-phase nanoparticles, surface-confined nanoparticle arrays and single nanoparticles as biological sensing platforms. J Fluoresc 14:355–367PubMedCrossRefGoogle Scholar
  12. 12.
    Machulek Junior A, De Oliveira HPM, Gehlen MH (2003) Preparation of silver nanoprisms using poly(N-vinyl-2-pyrrolidone) as a colloid stabilizing agent and the effect of silver nanoparticles on the photophysical properties of cationic dyes. Photochem Photobiol Sci 2:921–925PubMedCrossRefGoogle Scholar
  13. 13.
    Zhao SY, Chen SH, Li DG, Yang XG, Ma HY (2004) A convenient phase transfer route for Ag nanoparticles. Physica E 23:92–96CrossRefGoogle Scholar
  14. 14.
    Kumar A, Joshi H, Pasricha R, Mandale AB, Sastry M (2003) Phase transfer of silver nanoparticles from aqueous to organic solutions using fatty amine molecules. J Colloid Interface Sci 264:396–401PubMedCrossRefGoogle Scholar
  15. 15.
    Pereira RV, Ferreira APG, Gehlen MH (2005) Excited-state intramolecular charge transfer in 9-aminoacridine derivative. J Phys Chem A 109:5978–5983PubMedCrossRefGoogle Scholar
  16. 16.
    Pereira RV, Gehlen MH (2006) Photoinduced intramolecular charge transfer in 9-aminoacridinium derivatives assisted by intramolecular H-bond. J Phys Chem A 110:7539–7546PubMedCrossRefGoogle Scholar
  17. 17.
    Hao E, Schatz GC, Hupp JT (2004) Synthesis and optical properties of anisotropic metal nanoparticles. J Fluoresc 14:331–341PubMedCrossRefGoogle Scholar
  18. 18.
    Haykawa T, Selvan ST, Nogami M (1999) Enhanced fluorescence from Eu+3 owing to surface plasma oscillation of silver particles in glass. J Non-Cryst Solids 259:16–22CrossRefGoogle Scholar
  19. 19.
    Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Kluwer, New York, chapter 8Google Scholar
  20. 20.
    Gehlen MH, De Schryver FC (1993) Time resolved fluorescence quenching in micellar assemblies. Chem Rev 93:199–221CrossRefGoogle Scholar
  21. 21.
    Barik A, Kumbhakar M, Nath S, Pal H (2005) Evidence for the TICT mediated nonradiative deexcitation process for the excited coumarin-1 dye in high polarity protic solvents. Chem Phys 315:277–285CrossRefGoogle Scholar
  22. 22.
    Das H, Jain B, Patel HS (2006) Hydrogen bonding properties of coumarin 151, 500 and 35: the effect of substitution at 7-amino position. J Phys Chem A 110:1698–1704PubMedCrossRefGoogle Scholar
  23. 23.
    Rivas L, Murza A, Sánchez-Cortés S, García-Ramos JV (2001) Adsorption of acridine drugs on silver surface-enhanced resonance Raman evidence of the existence of different adsorption sites. Vibr Spectrosc 25:19–28CrossRefGoogle Scholar
  24. 24.
    Aslan K, Leonenko Z, Lakowicz JR, Geddes CD (2005) Annealed silver-island films for applications in metal-enhanced fluorescence: interpretation in terms of radiating plasmons. J Fluoresc 15:643–654PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Carolina A. Sabatini
    • 1
  • Robson V. Pereira
    • 1
  • Marcelo H. Gehlen
    • 1
  1. 1.Instituto de Química de São CarlosUniversidade de São PauloSão CarlosBrazil

Personalised recommendations