Journal of Fluorescence

, Volume 17, Issue 4, pp 444–451

Comparative Investigation on Nanocrystal Structure and Luminescence Properties of Gadolinium Molybdates Codoped with Er3+/Yb3+

Original Paper


This paper reports on the comparative investigation of nanocrystal structure and luminescence properties of Er3+/Yb3+-codoped gadolinium molybdate nanocrystals Gd2(MoO4)3 and Gd2MoO6 synthesized by the Pechini method with citric acid and ethylene glycol. Their crystallization, structure transformation, and morphologies have been investigated by X-ray diffraction, thermogravimetric/differential scanning calorimetry, and transmission electron microscopy. It is noticed that Er3+/Yb3+-codoped monoclinic Gd2(MoO4)3 nanocrystals have shown an intense upconversion through a sintering of the organic complex precursor at 600°C. Furthermore, it transforms to orthorhombic Gd2(MoO4)3 when the precursor is sintered at 900°C. In counterpart of monoclinic Gd2MoO6, however, the monoclinic structure remains unchanged when the precursor is sintered at a temperature ranging from 600°C to 900°C. Intense visible emissions of Er3+ attributed to the transitions of 2H11/2, 4S3/24I15/2 at 520 and 550 nm, and 4F9/24I15/2 at 650 nm have been observed upon an excitation with a UV source and a 980 nm laser diode, and the involved mechanisms have been explained. It is quite interesting to observe obvious differences both in the excitation and the upconversion emission spectra of Er3+/Yb3+-codoped Gd2(MoO4)3 respectively with monoclinic and orthorhombic structure. The quadratic dependence of fluorescence on excitation laser power has confirmed that two-photons contribute to upconversion of the green–red emissions.


Nanophosphor Gadolinium molybdate Upconversion luminescence 


  1. 1.
    Jia CJ, Sun LD, Luo F, Jiang XC, Wei LH, Yan CH (2004) Appl Phys Lett 84:5305CrossRefGoogle Scholar
  2. 2.
    Riwotzki K, Haase M (1998) J Phys Chem B 102:10129CrossRefGoogle Scholar
  3. 3.
    Wakefield G, Holland E, Dobson PJ, Hutchison JL (2001) Adv Mater 13:1557CrossRefGoogle Scholar
  4. 4.
    Yu M, Lin J, Wang Z, Fu J, Wang S, Zhang HJ, Han YC (2002) Chem Mater 14:2224CrossRefGoogle Scholar
  5. 5.
    Guo H, Dong N, Yin M, Zhang WP, Lou LR, Xia SD (2004) J Phys Chem B 108:19205CrossRefGoogle Scholar
  6. 6.
    Lei YQ, Song HW, Yang LM, Yu LX, Liu ZX, Pan GH, Bai X, Fan LB (2005) J Chem Phys 123:174710PubMedCrossRefGoogle Scholar
  7. 7.
    Vetrone F, Boyer JC, Capobianco JA, Speghini A, Bettinelli M (2003) Chem Mater 15:2737CrossRefGoogle Scholar
  8. 8.
    Matsuura D (2002) Appl Phys Lett 81:4526CrossRefGoogle Scholar
  9. 9.
    Rosa-Cruz E, Diaz-Torres LA, Rodriguez-Rojas RA, Meneses-Nava MA, Barbosa-Garcia O (2003) Appl Phys Lett 83:4903CrossRefGoogle Scholar
  10. 10.
    Zhang QY, Feng ZM, Yang ZM, Jiang ZH (2006) J Quant Spectrosc Radiat Transfer 98:167CrossRefGoogle Scholar
  11. 11.
    Yi GS, Lu HC, Zhao SY, Ge Y, Yang WJ, Chen DP, Guo LH (2004) Nano Lett 4:2191CrossRefGoogle Scholar
  12. 12.
    Zeng JH, Su J, Li ZH, Ya RX, Li YD (2005) Adv Mater 17:2119CrossRefGoogle Scholar
  13. 13.
    Tuan VD, Guy G (2003) Sens Actuators B 9:104Google Scholar
  14. 14.
    Bao JP, Xu XW, Fan HL, Mu QY, Li YP (2003) Mater Rev (in Chinese) 17:191Google Scholar
  15. 15.
    Sivakumar S, Diamente PR, Veggel van FCJM (2006) Chem Eur J 12:5878CrossRefGoogle Scholar
  16. 16.
    Pechini MU (1967) US Patent No. 3330697Google Scholar
  17. 17.
    Liu W, Farrington GC, Chaput F, Dunn B (1996) J Electrochem Soc 143(3):879CrossRefGoogle Scholar
  18. 18.
    Yi GS, Sun BQ, Yang FZ, Chen DP, Zhou YX, Cheng J (2002) Chem Mater 14:2910CrossRefGoogle Scholar
  19. 19.
    Bubb DM, Cohen D, Qadri SB (2005) Appl Phys Lett 87:131909CrossRefGoogle Scholar
  20. 20.
    Borchardt HJ, Bierstedt PE (1966) Appl Phys Lett 8:50CrossRefGoogle Scholar
  21. 21.
    Shur YaV, Nikolaeva EV, Shishkin EI, Baturin IS, Shur AG, Utschig T, Schlegel T, Laupascu DC (2005) Appl Phys Lett 98:74106Google Scholar
  22. 22.
    Pan YX, Su Q, Xu HF, Chen TH, Ge WK, Yang CL, Wu MM (2003) J Solid State Chem 74:69CrossRefGoogle Scholar
  23. 23.
    Evans JSO, Mary TA, Sleight AW (1997) J Solid State Chem 133:580CrossRefGoogle Scholar
  24. 24.
    Pollnau M, Gamelin DR, Luthi SR, Gudel HU, Hehlen MP (2000) Phys Rev B 61:3337CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Key Lab of Specially Functional Materials of Ministry of Education and Institute of Optical communicationSouth China University of TechnologyGuangzhouPeople’s Republic of China
  2. 2.College of ChemistrySouth China University of TechnologyGuangzhouPeople’s Republic of China

Personalised recommendations