Journal of Fluorescence

, Volume 17, Issue 6, pp 727–738 | Cite as

Single-molecule Detection of Reactive Oxygen Species: Application to Photocatalytic Reactions

Original Paper


In this review, we have focused on the oxidation reactions of single dye molecules by reactive oxygen species (ROS). The methodologies for the single-molecule detection of ROS, such as hydroxyl radical (HO), singlet oxygen (O2(a1Δg)), and hydrogen peroxide (H2O2), have been introduced together with examples. In particular, a successful application using the single-molecule fluorescence technique for the investigation of the TiO2 photocatalytic oxidation reactions is demonstrated in detail.


Single-molecule fluorescence spectroscopy Reactive oxygen species TiO2 photocatalyst Photooxidation 


  1. 1.
    Pardini RS (1995) Toxicity of oxygen from naturally occurring redox-active pro-oxidants. Arch Insect Biochem Physiol 29:101–118PubMedCrossRefGoogle Scholar
  2. 2.
    Seinfeld JH, Pandis SN (1998) Atmospheric chemistry and physics. Wiley, New YorkGoogle Scholar
  3. 3.
    Wasserman HH, Murray RW (1979) Singlet oxygen. Academic, New YorkGoogle Scholar
  4. 4.
    Kearns DR (1971) Physical and chemical properties of singlet molecular oxygen. Chem Rev 71:395–427CrossRefGoogle Scholar
  5. 5.
    Schweitzer C, Schmidt R (2003) Physical mechanisms of generation and deactivation of singlet oxygen. Chem Rev 103:1685–1757PubMedCrossRefGoogle Scholar
  6. 6.
    Adam W, Kazakov DV, Kazakov VP (2005) Singlet-oxygen chemiluminescence in peroxide reactions. Chem Rev 105:3371–3387PubMedCrossRefGoogle Scholar
  7. 7.
    Kautsky H, de Bruijn H (1931) The explanation of the inhibition of photoluminescence of fluorescent systems by oxygen: the formation of active, diffusing oxygen molecules by sensitization. Naturwissenschaften 19:1043CrossRefGoogle Scholar
  8. 8.
    Kautsky H, Hirsch A (1931) Energy transformations on boundary surfaces, IV. Interaction of excited dyestuff molecules and oxygen. Chem Ber 64:2677–2683Google Scholar
  9. 9.
    Kautsky H, de Bruijn H, Neuwirth R, Baumeister W (1933) Energy transfers at surfaces, VII. Photosensitized oxidation as the action of an active, metastable state of the oxygen molecule. Chem Ber 66:1588–1600Google Scholar
  10. 10.
    Kautsky H (1939) Quenching of luminescence by oxygen. Trans Faraday Soc 35:216–219CrossRefGoogle Scholar
  11. 11.
    Khan A, Kasha M (1963) Red chemiluminescence of oxygen in aqueous solution. J Chem Phys 39:2105–2106CrossRefGoogle Scholar
  12. 12.
    Khan AU, Kasha M (1964) Rotational structure in the chemiluminescence spectrum of molecular oxygen in aqueous systems. Nature 204:241–243CrossRefGoogle Scholar
  13. 13.
    Foote CS, Wexler S (1964) Olefin oxidations with excited singlet molecular oxygen. J Am Chem Soc 86:3879–3880CrossRefGoogle Scholar
  14. 14.
    Corey EJ, Taylor WC (1964) A study of the peroxidation of organic compounds by externally generated singlet oxygen molecules. J Am Chem Soc 86:3881–3882CrossRefGoogle Scholar
  15. 15.
    Kovalev D, Fujii M (2005) Silicon nanocrystals: photosensitizers for oxygen molecules. Adv Mater 17:2531–2544CrossRefGoogle Scholar
  16. 16.
    Nosaka Y, Daimon T, Nosaka AY, Murakami Y (2004) Singlet oxygen formation in photocatalytic TiO2 aqueous suspension. Phys Chem Chem Phys 6:2917–2918CrossRefGoogle Scholar
  17. 17.
    Hirakawa K, Hirano T (2006) Singlet oxygen generation photocatalyzed by TiO2 particles and its contribution to biomolecule damage. Chem Lett 35:832–833CrossRefGoogle Scholar
  18. 18.
    Janczyk A, Krakowska E, Stochel G, Macyk W (2006) Singlet oxygen photogeneration at surface modified titanium dioxide. J Am Chem Soc 128:15574–15575PubMedCrossRefGoogle Scholar
  19. 19.
    Samia ACS, Chen X, Burda C (2003) Semiconductor quantum dots for photodynamic therapy. J Am Chem Soc 125:15736–15737PubMedCrossRefGoogle Scholar
  20. 20.
    Bonnett R (1995) Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy. Chem Soc Rev 24:19–33CrossRefGoogle Scholar
  21. 21.
    Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C: Photochem Rev 1:1–21CrossRefGoogle Scholar
  22. 22.
    Paunesku T, Rajh T, Wiederrecht G, Maser J, Vogt S, Stojićević N, Protić M, Lai B, Oryhon J, Thurnauer M, Woloschak G (2003) Biology of TiO2-oligonucleotide nanocomposites. Nature Mater 2:343–346CrossRefGoogle Scholar
  23. 23.
    Clarke SJ, Hollmann CA, Zhang Z, Suffern D, Bradforth SE, Dimitrijevic NM, Minarik WG, Nadeau JL (2006) Photophysics of dopamine-modified quantum dots and effects on biological systems. Nature Mater 5:409–417CrossRefGoogle Scholar
  24. 24.
    Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38PubMedCrossRefGoogle Scholar
  25. 25.
    Ollis DF, Al-Ekabi H (eds) (1993) Photocatalytic purification and treatment of water and air. Elsevier, AmsterdamGoogle Scholar
  26. 26.
    Hagfeldt A, Grätzel M (1995) Light-induced redox reactions in nanocrystalline systems. Chem Rev 95:49–68CrossRefGoogle Scholar
  27. 27.
    Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96CrossRefGoogle Scholar
  28. 28.
    Linsebigler AL, Lu G, Yates Jr JT (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758CrossRefGoogle Scholar
  29. 29.
    Thompson TL, Yates Jr JT (2006) Surface science studies of the photoactivation of TiO2-new photochemical processes. Chem Rev 106:4428–4453PubMedCrossRefGoogle Scholar
  30. 30.
    Ishibashi K, Nosaka Y, Hashimoto K, Fujishima A (1998) Time-dependent behavior of active oxygen species formed on photoirradiated TiO2 films in air. J Phys Chem B 102:2117–2120CrossRefGoogle Scholar
  31. 31.
    Nosaka Y, Nakamura M, Hirakawa T (2002) Behavior of superoxide radicals formed on TiO2 powder photocatalysts studied by a chemiluminescent probe method. Phys Chem Chem Phys 4:1088–1092CrossRefGoogle Scholar
  32. 32.
    Kubo W, Tatsuma T (2004) Detection of H2O2 released from TiO2 photocatalyst to air. Anal Sci 20:591–593PubMedCrossRefGoogle Scholar
  33. 33.
    Murakami Y, Kenji E, Nosaka AY, Nosaka Y (2006) Direct detection of OH radicals diffused to the gas phase from the UV-irradiated photocatalytic TiO2 surfaces by means of laser-induced fluorescence spectroscopy. J Phys Chem B 110:16808–16811PubMedCrossRefGoogle Scholar
  34. 34.
    Tatsuma T, Tachibana S, Miwa T, Tryk DA, Fujishima A (1999) Remote bleaching of methylene blue by UV-irradiated TiO2 in the gas phase. J Phys Chem B 103:8033–8035CrossRefGoogle Scholar
  35. 35.
    Tatsuma T, Tachibana S, Fujishima A (2001) Remote oxidation of organic compounds by UV-irradiated TiO2 via the gas phase. J Phys Chem B 105:6987–6992CrossRefGoogle Scholar
  36. 36.
    Kubo W, Tatsuma T, Fujishima A, Kobayashi H (2004) Mechanisms and resolution of photocatalytic lithography. J Phys Chem B 108:3005–3009CrossRefGoogle Scholar
  37. 37.
    Kubo W, Tatsuma T (2006) Mechanisms of photocatalytic remote oxidation. J Am Chem Soc 128:16034–16035PubMedCrossRefGoogle Scholar
  38. 38.
    Gomes A, Fernandes E, Lima JLFC (2005) Fluorescence probes used for detection of reactive oxygen species. J Biochem Biophys Methods 65:45–80PubMedCrossRefGoogle Scholar
  39. 39.
    Ogilby PR (1999) Solvent effects on the radiative transitions of singlet oxygen. Acc Chem Res 32:512–519CrossRefGoogle Scholar
  40. 40.
    Snyder JW, Zebger I, Gao Z, Poulsen L, Frederiksen PK, Skovsen E, McIlroy SP, Klinger M, Andersen LK, Ogilby PR (2004) Singlet oxygen microscope: from phase-separated polymers to single biological cells. Acc Chem Res 37:894–901PubMedCrossRefGoogle Scholar
  41. 41.
    Snyder JW, Skovsen E, Lambert JDC, Poulsen L, Ogilby PR (2006) Optical detection of singlet oxygen from single cells. Phys Chem Chem Phys 8:4280–4293PubMedCrossRefGoogle Scholar
  42. 42.
    Klembt Andersen L, Ogilby PR (2001) A nanosecond near-infrared step-scan Fourier transform absorption spectrometer: Monitoring singlet oxygen, organic molecule triplet states, and associated thermal effects upon pulsed-laser irradiation of a photosensitizer. Rev Sci Instrum 73:4313–4324CrossRefGoogle Scholar
  43. 43.
    Zander C, Enderlein J, Keller RA (eds) (2002) Single molecule detection in solution: methods and applications. Wiley, New YorkGoogle Scholar
  44. 44.
    Xie XS, Trautman JK (1998) Optical studies of single molecules at room temperature. Annu Rev Phys Chem 49:441–480PubMedCrossRefGoogle Scholar
  45. 45.
    Tinnefeld P, Sauer M (2005) Branching out of single-molecule fluorescence spectroscopy: challenges for chemistry and influence on biology. Angew Chem (Int Ed) 44:2642–2671CrossRefGoogle Scholar
  46. 46.
    Christ T, Kulzer F, Bordat P, Basché T (2001) Watching the photo-oxidation of a single aromatic hydrocarbon molecule. Angew Chem (Int Ed) 40:4192–4195CrossRefGoogle Scholar
  47. 47.
    Cotlet M, Vosch T, Habuchi S, Weil T, Müllen K, Hofkens J, De Schryver F (2005) Probing intramolecular förster resonance energy transfer in a naphthaleneimide-peryleneimide-terrylenediimide-based dendrimer by ensemble and single-molecule fluorescence spectroscopy. J Am Chem Soc 127:9760–9768PubMedCrossRefGoogle Scholar
  48. 48.
    English DS, Furube A, Barbara PF (2000) Single-molecule spectroscopy in oxygen-depleted polymer films. Chem Phys Lett 324:15–19CrossRefGoogle Scholar
  49. 49.
    Hou Y, Higgins DA (2002) Single molecule studies of dynamics in polymer thin films and at surfaces: effect of ambient relative humidity. J Phys Chem B 106:10306–10315CrossRefGoogle Scholar
  50. 50.
    Mei E, Tang J, Vanderkooi JM, Hochstrasser RM (2003) Motions of single molecules and proteins in trehalose glass. J Am Chem Soc 125:2730–2735PubMedCrossRefGoogle Scholar
  51. 51.
    Mei E, Vinogradov S, Hochstrasser RM (2003) Direct observation of triplet state emission of single molecules: single molecule phosphorescence quenching of metalloporphyrin and organometallic complexes by molecular oxygen and their quenching rate distributions. J Am Chem Soc 125:13198–13204PubMedCrossRefGoogle Scholar
  52. 52.
    Lill Y, Hecht B (2004) Single dye molecules in an oxygen-depleted environment as photostable organic triggered single-photon sources. Appl Phys Lett 84:1665–1667CrossRefGoogle Scholar
  53. 53.
    Zondervan R, Kulzer F, Kol’chenko MA, Orrit M (2004) Photobleaching of rhodamine 6G in poly(vinyl alcohol) at the ensemble and single-molecule levels. J Phys Chem A 108:1657–1665CrossRefGoogle Scholar
  54. 54.
    Haase M, Hu1bner CG, Reuther E, Herrmann A, Müllen K, Basché Th (2004) Exponential and power-law kinetics in single-molecule fluorescence intermittency. J Phys Chem B 108:10445–10450CrossRefGoogle Scholar
  55. 55.
    Park SJ, Gesquiere AJ, Yu J, Barbara PF (2004) Charge injection and photooxidation of single conjugated polymer molecules. J Am Chem Soc 126:4116–4117PubMedCrossRefGoogle Scholar
  56. 56.
    van Dijk MA, Kapitein LC, van Mameren J, Schmidt CF, Peterman EJG (2004) Combining optical trapping and single-molecule fluorescence spectroscopy: enhanced photobleaching of fluorophores. J Phys Chem B 108:6479–6484CrossRefGoogle Scholar
  57. 57.
    Renn A, Seelig J, Sandoghdar V (2006) Oxygen-dependent photochemistry of fluorescent dyes studied at the single molecule level. Mol Phys 104:409–414CrossRefGoogle Scholar
  58. 58.
    Naito K, Tachikawa T, Fujitsuka M, Majima T (2005) Single-molecule fluorescence imaging of the remote TiO2 photocatalytic oxidation. J Phys Chem B 109:23138–23140PubMedCrossRefGoogle Scholar
  59. 59.
    Naito K, Tachikawa T, Cui S-C, Sugimoto A, Fujitsuka M, Majima T (2006) Single-molecule detection of airborne singlet oxygen. J Am Chem Soc 128:16430–16431PubMedCrossRefGoogle Scholar
  60. 60.
    Edman L, Földes-Papp Z, Wennmalm S, Rigler R (1999) The fluctuating enzyme: a single molecule approach. Chem Phys 247:11–22CrossRefGoogle Scholar
  61. 61.
    Bjerneld EJ, Földes-Papp Z, Käll M, Rigler R (2002) Single-molecule surface-enhanced raman and fluorescence correlation spectroscopy of horseradish peroxidase. J Phys Chem B 106:1213–1218CrossRefGoogle Scholar
  62. 62.
    Roeffaers MBJ, Sels BF, Uji-i H, De Schryver FC, Jacobs PA, De Vos DE, Hofkens J (2006) Spatially resolved observation of crystal-face-dependent catalysis by single turnover counting. Nature 439:572–575PubMedCrossRefGoogle Scholar
  63. 63.
    Craighead H (2006) Future lab-on-a-chip technologies for interrogating individual molecules. Nature 442:387–393PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.The Institute of Scientific and Industrial Research (SANKEN)Osaka UniversityOsakaJapan

Personalised recommendations