Journal of Fluorescence

, Volume 17, Issue 3, pp 279–287

Microwave-Triggered Chemiluminescence with Planar Geometrical Aluminum Substrates: Theory, Simulation and Experiment

Original Paper

Abstract

Previously we combined common practices in protein detection with chemiluminescence, microwave technology, and metal-enhanced chemiluminescence to demonstrate that we can use low power microwaves to substantially increase enzymatic chemiluminescent reaction rates on particulate silvered substrates. We now describe the applicability of continuous aluminum metal substrates to potentially further enhance or “trigger” enzymatic chemiluminescence reactions. Furthermore, our results suggest that the extent of chemiluminescence enhancement for surface and solution based enzyme reactions critically depends on the surface geometry of the aluminum film.

In addition, we also use FDTD simulations to model the interactions of the incident microwave radiation with the aluminum geometries used. We demonstrate that the extent of microwave field enhancement for solution and surface based chemiluminescent reactions can be ascribed to “lightning rod” effects that give rise to different electric field distributions for microwaves incident on planar aluminum geometries. With these results, we believe that we can spatially and temporally control the extent of triggered chemiluminescence with low power microwave (Mw) pulses and maximize localized microwave triggered metal-enhanced chemiluminescence (MT-MEC) with optimized planar aluminum geometries. Thus we can potentially further improve the sensitivity of immunoassays with significantly enhanced signal-to-noise ratios.

Keywords

Immunoassays Ultrasensitive assays Protein detection Low-power microwaves Metal-enhanced chemiluminescence Protein quantification Plasmons Plasmonics Metal-enhanced fluorescence Radiative decay engineering Surface enhanced fluorescence Plasmon enhanced fluorescence Plasmon enhanced luminescence 

Acronyms and symbols

BSA

Bovine Serum Albumin

FDTD

Finite-Difference Time Domain

HRP

Horseradish peroxidase

MAMEF

Microwave-Accelerated Metal-Enhanced Fluorescence

MEF

Metal-Enhanced Fluorescence

MT-MEC

Microwave-Triggered Metal-Enhanced Chemiluminescence

Mw

Low-Power Microwave heating

References

  1. 1.
    Previte MJR, Aslan K, Malyn S, Geddes CD (2006) Microwave-triggered metal-enhanced chemiluminescence (MT-MEC): Application to ultra-fast and ultra-sensitive clinical assays. J Fluorescence 16(5):641–647CrossRefGoogle Scholar
  2. 2.
    Previte MJR, Aslan K, Malyn S, Geddes CD (2006) Microwave triggered metal-enhanced chemiluminescence: Quantitative protein determination. Anal ChemGoogle Scholar
  3. 3.
    Kricka LJ (ed) (2000) Bioluminescence and chemiluminescence, Pt C. pp 333–345Google Scholar
  4. 4.
    Burnette WN (1981) “Western blotting”: Electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A Anal Biochem 112(2):195–203CrossRefPubMedGoogle Scholar
  5. 5.
    Whitehead TP, Thorpe GHG, Carter TJN, Groucutt C, Kricka LJ (1983) Enhanced luminescence procedure for sensitive determination of peroxidase-labeled conjugates in immunoassay. Nature 306(5930):158–159.CrossRefGoogle Scholar
  6. 6.
    Dubois R (1885) Note sur la physiologie des pyrophores. C R Soc Biol 2:559Google Scholar
  7. 7.
    Harvey EN (1957) A history of luminescence from the earlies times until 1900. The American Philosophical Society, Philiadelphia, PAGoogle Scholar
  8. 8.
    Kricka LJ (1994) In: Campbell AK, Kricka LJ, Stanley PE (eds) Bioluminescence and chemiluminescence: Fundamental and applied aspects. Wiley, ChichesterGoogle Scholar
  9. 9.
    Ozinkas A (1994) In: Lakowicz JR (ed) Topics in fluorescence spectroscopy. Plenum Press, New YorkGoogle Scholar
  10. 10.
    Bange A, Halsall HB, Heineman WR (2005) Microfluidic immunosensor systems Biosens. Bioelectron 20(12):2488–2503CrossRefGoogle Scholar
  11. 11.
    Chowdhury MH, Aslan K, Malyn SN, Lakowicz JR, Geddes CD (2006) Metal-enhanced chemiluminescence. J Fluorescence 16(3):295–299CrossRefGoogle Scholar
  12. 12.
    Aslan K, Malyn SN, Geddes CD (2006). Multicolor microwave-triggered metal-enhanced chemiluminescence. J Am Chem Soc 128(41):13372–13373CrossRefPubMedGoogle Scholar
  13. 13.
    Aslan K, Geddes CD (2005) Microwave-accelerated metal-enhanced fluorescence: Platform technology for ultrafast and ultrabright assays. Anal Chem 77(24):8057–8067CrossRefPubMedGoogle Scholar
  14. 14.
    Whittaker AG, Mingos DMP (1995) Microwave-assisted solid-state reactions involving metal powders. J Chem Soc Dalton Trans 12:2073–2079CrossRefGoogle Scholar
  15. 15.
    Sridar V (1998) Microwave radiation as a catalyst for chemical reactions. Curr Sci 74(5):446–450Google Scholar
  16. 16.
    Sridar V (1997) Rate acceleration of Fischer-indole cyclization by microwave irradiation. Indian J Chem Sect B-Org Chem Incl Med Chem 36(1):86–87Google Scholar
  17. 17.
    Varma RS (2002) Advances in green chemistry: Chemical synthesis using microwave irradiation. Astrazeneca Research Foundation, Banglore, IndiaGoogle Scholar
  18. 18.
    Caddick S (1995) Microwave assisted organic reactions. Tetrahedron 51:10403–10432CrossRefGoogle Scholar
  19. 19.
    Lin JC, Yuan PMK, Jung DT (1998) Enhancement of anticancer drug delivery to the brain by microwave induced hyperthermia. Bioelectrochem Bioenerg 47(2):259–264CrossRefGoogle Scholar
  20. 20.
    Akins RE, Tuan RS (1995) Ultrafast protein determinations using microwave enhancement. Mol Biotechnol 4(1):17–24PubMedGoogle Scholar
  21. 21.
    Croppo GP, Visvesvara GS, Leitch GJ, Wallace S, Schwartz DA (1998) Identification of the microsporidian Encephalitozoon hellem using immunoglobulin G monoclonal antibodies. Arch Pathol Lab Med 122(2):182–186PubMedGoogle Scholar
  22. 22.
    Philippova TM, Novoselov VI, Alekseev SI (1994) Influence of microwaves on different types of receptors and the role of peroxidation of lipids on receptor-protein shedding. Bioelectromagnetics 15(3):183–192CrossRefPubMedGoogle Scholar
  23. 23.
    VanTriest B, Loftus BM, Pinedo HM, Backus HHJ, Schoenmakers P, Telleman F, Tadema T, Aherne GW, Van Groeningen CJ, Zoetmulder FAN, Taal BG, Johnston PG, Peters GJ (2000) Thymidylate synthase expression in patients with colorectal carcinoma using a polyclonal thymidylate synthase antibody in comparison to the TS 106 monoclonal antibody. J Histochem Cytochem 48(6):755–760Google Scholar
  24. 24.
    Rhodes A, Jasani B, Balaton AJ, Barnes DM, Anderson E, Bobrow LG, Miller KD (2001) Study of interlaboratory reliability and reproducibility of estrogen and progesterone receptor assays in Europe—Documentation of poor reliability and identification of insufficient microwave antigen retrieval time as a major contributory element of unreliable assays. Am J Clin Pathol 115(1):44–58CrossRefPubMedGoogle Scholar
  25. 25.
    Bismuto E, Mancinelli F, d’Ambrosio G, Massa R (2003) Are the conformational dynamics and the ligand binding properties of myoglobin affected by exposure to microwave radiation? Eur Biophys J Biophys Lett 32(7):628–634Google Scholar
  26. 26.
    Roy I, Gupta MN (2003) Applications of microwaves in biological sciences. Curr Sci 85(12):1685–1693Google Scholar
  27. 27.
    Porcelli M, Cacciapuoti G, Fusco S, Massa R, dAmbrosio G, Bertoldo C, DeRosa M, Zappia V (1997) Non-thermal effects of microwaves on proteins: Thermophilic enzymes as model system. FEBS Lett 402(2–3):102–106CrossRefPubMedGoogle Scholar
  28. 28.
    Chen LF, Ong CK, Neo CP, Varadan VV, Varadan VK (2004) Microwave electronics measurement and materials characterization. John Wiley & Sons Ltd., ChichesterGoogle Scholar
  29. 29.
    Liao PF, Wokaun A (1982) Lightning rod effect in surface enhanced raman-scattering. J Chem Phys 76(1):751–752CrossRefGoogle Scholar
  30. 30.
    Kappe CO (2002) High-speed combinatorial synthesis utilizing microwave irradiation. Curr Opin Chem Biol 6(3):314–320CrossRefPubMedGoogle Scholar
  31. 31.
    Schweitzer B, Kingsmore SF (2002) Measuring proteins on microarrays. Curr Opin Biotechnol 13(1):14–19CrossRefPubMedGoogle Scholar
  32. 32.
    Lin JC (1986) Special issue on phased-arrays for hyperthermia treatment of cancer—foreword. IEEE Trans Microw Theory Tech 34(5):481–483CrossRefGoogle Scholar
  33. 33.
    Arber SL, Lin JC (1984) Microwave enhancement of membrane conductance - Effects of Edta, Caffeine and Tetracaine. Physiol Chem Phys Med NMR 16(6):469–475PubMedGoogle Scholar
  34. 34.
    Arber SL, Lin JC (1985). Microwave-induced changes in nerve-cells - effects of modulation and temperature. Bioelectromagnetics 6(3):257–270CrossRefPubMedGoogle Scholar
  35. 35.
    Jain S, Sharma S, Gupta MN (2002) A microassay for protein determination using microwaves. Anal Biochem 311(1):84–86CrossRefPubMedGoogle Scholar
  36. 36.
    Green NM (1975) Adv Protein Chem 29:85–133PubMedGoogle Scholar
  37. 37.
    Wilchek M, Bayer EA (1988) The avidin-biotin complex in bioanalytical applications. Anal Biochem 171(1):1–32CrossRefPubMedGoogle Scholar
  38. 38.
    Wilchek M, Bayer EA (1990) Applications of avidin-biotin technology: literature survey. Method Enzymol 184:14–45CrossRefGoogle Scholar
  39. 39.
    Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Kluwer Academic, New YorkGoogle Scholar
  40. 40.
    Aslan K, Lakowicz JR, Geddes CD (2005) Plasmon light scattering in biology and medicine: New sensing approaches, visions and perspectives. Curr Opin Chem Biol 9(5):538–544CrossRefPubMedGoogle Scholar
  41. 41.
    I Lumerical Solutions (2006) FDTD solutions manual release 4.0. Vancouver, BCGoogle Scholar
  42. 42.
    Suckling JR, Hibbins AP, Lockyear MJ, Preist TW, Sambles JR, Lawrence CR (2004) Finite conductance governs the resonance transmission of thin metal slits at microwave frequencies. Phys Rev Lett 92(14)Google Scholar
  43. 43.
    Hanafusa S, Iwasaki T, Nishimura N (1994) “Electromagnetic field analysis of a microwave oven by the FD-TD method-a consideration on steady state analysis,” presented at Antennas and Propagation Society International Symposium, 1994. AP-S. DigestGoogle Scholar
  44. 44.
    Radzevicius SJ, Chen CC, Peters L, Daniels JJ (2003) Near-field dipole radiation dynamics through FDTD modeling. J Appl Geophys 52(2–3):75–91CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Institute of Fluorescence, Laboratory for Advanced Fluorescence Spectroscopy & Laboratory for Advanced Medical Plasmonics, Medical Biotechnology CenterUniversity of Maryland Biotechnology InstituteBaltimoreUSA
  2. 2.Center for Fluorescence Spectroscopy, Medical Biotechnology CenterUniversity of Maryland School of MedicineBaltimoreUSA

Personalised recommendations