Advertisement

Journal of Fluorescence

, Volume 17, Issue 1, pp 43–48 | Cite as

Fluorescence Lifetime Correlation Spectroscopy

  • Peter KapustaEmail author
  • Michael Wahl
  • Aleš Benda
  • Martin Hof
  • Jörg Enderlein
Original Paper

Abstract

This article explains the basic principles of FLCS, a genuine fusion of Time-Correlated Single Photon Counting (TCSPC) and Fluorescence Correlation Spectroscopy (FCS), using common terms and minimum mathematics. The usefulness of the method is demonstrated on simple FCS experiments. The method makes possible to separate the autocorrelation function of individual components of a mixture of fluorophores, as well as purging the result from parasitic contributions like scattered light or detector afterpulsing.

Keywords

FCS TCSPC Lifetime Correlation Multichannel detection Scattering Afterpulsing 

Notes

Acknowledgment

A.B. and M.H. acknowledge financial support by the Ministry of Education and Sport of the Czech Republic via grant LC06063.

References

  1. 1.
    Böhmer M, Wahl M, Rahn H-J, Erdmann R, Enderlein J (2002) Time-resolved fluorescence correlation spectroscopy. Chem Phys Lett 353(5–6):439–445CrossRefGoogle Scholar
  2. 2.
    Benda A, Hof M, Wahl M, Patting M, Erdmann R, Kapusta P (2005) TCSPC upgrade of a confocal FCS microscope. Rev Sci Instrum 76(3):033106CrossRefGoogle Scholar
  3. 3.
    Enderlein J, Gregor I,(2005) Using fluorescence lifetime for discriminating detector afterpulsing in fluorescence-correlation spectroscopy. Rev Sci Instrum 76(3):033102CrossRefGoogle Scholar
  4. 4.
    Meseth U, Wohland Th, Rigler R, Vogel H (1999), Resolution of fluorescence correlation measurements. Biophys J 76(3):1619–1631PubMedGoogle Scholar
  5. 5.
    Enderlein J, Erdmann R (1997) Fast fitting of multi-exponential decay curves. Opt Commun 134(1–6):371–378CrossRefGoogle Scholar
  6. 6.
    Wahl M, Koberling F, Patting M, Rahn H-J, Erdmann R (2004) Time-resolved confocal fluorescence imaging and spectroscopy system with single molecule sensitivity and sub-micrometer resolution. Curr Pharm Biotechnol 5(3):299–308PubMedCrossRefGoogle Scholar
  7. 7.
    Böhmer M, Enderlein J (2003) Fluorescence spectroscopy of single molecules under ambient conditions: Methodology and technology. Chem Phys Chem 4(8):792-808Google Scholar
  8. 8.
    Böhmer M, Pampaloni F, Wahl M, Rahn H-J, Erdmann R, Enderlein J (2001) Time-resolved confocal scanning device for ultrasensitive fluorescence detection. Rev Sci Instrum 72(11):4145–4152CrossRefGoogle Scholar
  9. 9.
    Wahl M, Gregor I, Patting M, Enderlein J (2003), Fast calculation of fluorescence correlation data with asynchronous time-correlated single-photon counting. Opt Expr 11(26):3583–3591CrossRefGoogle Scholar
  10. 10.
    Lamb DC, Schenk A, Röcker C, Scalfi-Happ C, Nienhaus GU (2000) Sensitivity enhancement in fluorescence correlation spectroscopy of multiple species using time-gated detection. Biophys J 79(2):1129–1138PubMedCrossRefGoogle Scholar
  11. 11.
    Benda A, Fagulova V, Deyneka A, Enderlein J, Hof M (2006) Fluorescence lifetime correlation spectroscopy combined with lifetime tuning: New perspectives in supported phospholipid bilayer research. Langmuir 22(23):9580–9585Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • Peter Kapusta
    • 1
    Email author
  • Michael Wahl
    • 1
  • Aleš Benda
    • 2
  • Martin Hof
    • 2
  • Jörg Enderlein
    • 3
  1. 1.PicoQuant GmbHBerlinGermany
  2. 2.J. Heyrovský Institute of Physical ChemistryAcademy of Sciences of the Czech RepublicPragueCzech Republic
  3. 3.IBI-1, Forschungszentrum Jülich in der HelmholtzgesellschaftJülichGermany

Personalised recommendations