Journal of Fluorescence

, Volume 16, Issue 5, pp 659–670 | Cite as

The Use of Poly(Sodium N-Undecanoyl-l-Leucylvalinate), Poly(Sodium N-Undecanoyl-l-Leucinate) and Poly(Sodium N-Undecanoyl-l-Valinate) Surfactants as Chiral Selectors for Determination of Enantiomeric Composition of Samples by Multivariate Regression Modeling of Fluorescence Spectral Data

  • Sayo O. Fakayode
  • Alicia A. Williams
  • Marianna A. Busch
  • Kenneth W. Busch
  • Isiah M. Warner
Original Paper

Abstract

Steady-state fluorescence spectroscopy was employed to investigate the use of chiral polymeric surfactants as chiral selectors in chiral analysis by multivariate regression modeling of spectral data. Partial-least-squares regression modeling (PLS-1) was used to correlate changes in the fluorescence spectral data of 1,1′-bi-2-naphthol (BOH), 1,1′-binaphthyl-2,2′-diamine (BNA), or 2,2,2-trifluoroanthrylethanol (TFA) in the presence of poly(sodium N-undecanoyl-l-leucylvalinate), poly(sodium N-undecanoyl-l-leucinate) or poly(sodium N-undecanoyl-l-valinate) as the enantiomeric composition of the chiral analytes was varied. The regression models produced from the spectral data were validated by determining the enantiomeric composition of independently prepared test solutions. The ability of the model to correctly predict the enantiomeric composition of future samples was evaluated using the root-mean-square percent-relative error (RMS%RE) of prediction. In terms of RMS%RE, the ability of the model to accurately predict the enantiomeric composition of future samples was dependent on the chiral analyte, the polymeric surfactant used, and the surfactant medium, and ranged between 1.57 and 6.10%. Chiral analyte concentrations as low as 5×10−6 M were found to give regression models with good predictability.

Keywords

Chiral analysis Fluorescence spectroscopy Multivariate regression analysis Chiral polymeric surfactant Chiral selector-guest complexation 

REFERENCES

  1. 1.
    Buxton SR, Roberts SM (1996) Organic stereochemistry. Longman, SingaporeGoogle Scholar
  2. 2.
    Jamali F, Mehvar R, Pasutto FM (1989) Enantioselective aspects of drug action and disposition: therapeutic pitfalls. J Pharm Sci 78(9):695–715PubMedGoogle Scholar
  3. 3.
    Caldwell J (1996) Importance of stereospecific bioanalytical monitoring in drug development. J Chromatogr A 719(1):3–13PubMedCrossRefGoogle Scholar
  4. 4.
    Schreier P, Bernreuther A, Huffer M (1995) Analysis of chiral organic molecules. Walter de Gruyter, New YorkGoogle Scholar
  5. 5.
    Aboul-Enein HY, Ali I (2003) Chiral separations by liquid chromatography and related technologies. Marcel Dekker, New YorkGoogle Scholar
  6. 6.
    Zief M, Crane LJ (1988) Chromatographic chiral separations. Marcel Dekker, New YorkGoogle Scholar
  7. 7.
    Subramanian G (2001) Chiral separation techniques: A practical approach. Wiley-VCH, WeinheimGoogle Scholar
  8. 8.
    Schmid MG, Laffranchini M, Gubitz G (1999) Chiral separation of sympathomimetics by ligand exchange capillary electrophoresis. Electrophoresis 20(12):2458–2461PubMedCrossRefGoogle Scholar
  9. 9.
    Liu X, Ilankumaran P, Guzei IA, Verkade JG (2000) P[(S,S,S)-PhHMeCNCH2CH2]3N: A new chiral 31P and 1H NMR spectroscopic reagent for the direct determination of ee values of chiral azides. J Org Chem 65(3):701–706CrossRefGoogle Scholar
  10. 10.
    Szejili J, Osa T (eds) (1996) Supramolecular chemistry—cylcodextrins, vol. 3. Pergamon, OxfordGoogle Scholar
  11. 11.
    Easton CJ, Lincoln SF (1999) Modified cyclodextrins. Imperial College Press, LondonGoogle Scholar
  12. 12.
    Wang J, Warner IM (1995) Combined polymerized chiral micelle and γ-cyclodextrin for chiral separation in capillary electrophoresis. J Chromatogr A 711(2):297–304PubMedCrossRefGoogle Scholar
  13. 13.
    Maichel B, Potocek B, Gas B, Chiari M, Kenndler E (1998) Separation of neutral compounds by capillary electrokinetic chromatography using polyethyleneimine as replaceable cationic pseudostationary phase. Electophoresis 19(12):2124–2128CrossRefGoogle Scholar
  14. 14.
    Desiderio C, Fanali S (1998) Chiral analysis by capillary electrophoresis using antibiotics as chiral selector. J Chromatogr A 807(1):37–56PubMedCrossRefGoogle Scholar
  15. 15.
    Pascoe RJ, Peterson AG, Foley JP (2000) Investigation of the chiral surfactant N-dodecoxycarbonylvaline in electrokinetic chromatography: improvements in elution range and pH stability via mixed micelles and vesicles, and the hydrophobicity determination of basic pharmaceutical drugs. Electrophoresis 21(15):2033–2042PubMedCrossRefGoogle Scholar
  16. 16.
    Hyun MH, Jin JS, Lee W (1998) Liquid chromatographic resolution of racemic amino acids and their derivatives on a new chiral stationary phase based on crown ether. J Chromatogr A 822(1):155–161CrossRefGoogle Scholar
  17. 17.
    Finn MG (2002) Emerging methods for the rapid determination of enantiomeric excess. Chirality 14(7):534–540PubMedCrossRefGoogle Scholar
  18. 18.
    Lightner DA, Gurst JE (2000) Organic conformation analysis and stereochemistry from circular dichroism spectroscopy. Wiley-CVH, New YorkGoogle Scholar
  19. 19.
    Fakayode SO, Busch MA, Bellert DJ, Busch KW (2005) Determination of the enantiomeric composition of phenylalanine samples by chemometric analysis of the fluorescence spectra of cyclodextrin guest-host complexes. Analyst 130(2):233–241PubMedCrossRefGoogle Scholar
  20. 20.
    Fakayode SO, Busch MA, Busch KW (2006) Determination of enantiomeric composition of samples by multivariate regression modeling of spectral data obtained with cyclodextrin guest–host complexes—effect of an achiral surfactant and use of mixed cyclodextrins. Talanta 68(5):1574–1583CrossRefGoogle Scholar
  21. 21.
    Fakayode SO, Swamidoss IM, Busch MA, Busch KW (2005) Determination of the enantiomeric composition of some molecules of pharmaceutical interest by chemometric analysis of the UV spectra of guest-host complexes formed with modified cyclodextrins. Talanta 65(4):838–845CrossRefGoogle Scholar
  22. 22.
    Busch KW, Swamidoss IM, Fakayode SO, Busch MA (2004) Determination of the enantiomeric composition of some molecules of pharmaceutical interest by chemometric analysis of the UV spectra of cyclodextrin guest-host complexes. Anal Chim Acta 525(1):53–62CrossRefGoogle Scholar
  23. 23.
    Busch KW, Swamidoss IM, Fakayode SO, Busch MA (2003) Determination of the enantiomeric composition of guest molecules by chemometric analysis of the uv-visible spectra of cyclodextrin guest-host complexes. J Am Chem Soc 125(7): 1690–1691PubMedCrossRefGoogle Scholar
  24. 24.
    Tran CD, Grishko VI, Oliveira D (2003) Determination of enantiomeric compositions of amino acids by near-infrared spectrometry through complexation with carbohydrate. Anal Chem 75(23):6455–6462PubMedCrossRefGoogle Scholar
  25. 25.
    Tran CD, Oliveira D, Grishko VI (2004) Determination of enantiomeric compositions of pharmaceutical products by near-infrared spectrometry. Anal Biochem 325(2):206–214PubMedCrossRefGoogle Scholar
  26. 26.
    Edward SH, Shamsi SA (2000) Micellar electrokinetic chromatography of polychlorinated biphenyl congeners using a polymeric surfactant as the pseudostationary phase. J Chromatogr A 903(1/2):227–236CrossRefGoogle Scholar
  27. 27.
    Wang J, Warner IM (1995) Combined polymerized chiral micelle and γ-cyclodextrin for chiral separation in capillary electrophoresis. J Chromatogr A 711(2):297–304PubMedCrossRefGoogle Scholar
  28. 28.
    Agnew-Heard KA, Pena MS, Shamsi SA, Warner IM (1997) Studies of polymerized sodium N-undecylenyl-L-valinate in chiral micellar electrokinetic capillary chromatography of neutral, acidic, and basic compounds. Anal Chem 69(5):958–964PubMedCrossRefGoogle Scholar
  29. 29.
    Yarabe HH, Shamsi SA, Warner IM (1999) Characterization and thermodynamic studies of the interactions of two chiral polymeric surfactants with model substances: phenylthiohydantoin amino acids. Anal Chem 71(18):3992–3999PubMedCrossRefGoogle Scholar
  30. 30.
    Shamsi SA, Warner IM (1997) Monomeric and polymeric chiral surfactants as pseudo-stationary phases for chiral separations. Electrophoresis 18(6):853–872PubMedCrossRefGoogle Scholar
  31. 31.
    Billiot HF, Billiot EJ, Warner IM (2001) Comparison of monomeric and polymeric amino acid based surfactants for chiral separations. J Chromatogr A 922(1&2):329–338PubMedCrossRefGoogle Scholar
  32. 32.
    Shamsi SA, Valle BC, Billiot F, Warner IM (2003) Polysodium N-undecanoyl- L-leucylvalinate: A versatile chiral selector for micellar electrokineticchromatography. Anal Chem 75(3):379–387PubMedCrossRefGoogle Scholar
  33. 33.
    McCarroll ME, Billiot FH, Warner IM (2001) Fluorescence anisotropy as a measure of chiral recognition. J Am Chem Soc 123(13), 3173–3174PubMedCrossRefGoogle Scholar
  34. 34.
    Malinowski ER (1991) Factor analysis in chemistry. Wiley, New YorkGoogle Scholar
  35. 35.
    Adams MJ (1995) Chemometrics in analytical spectroscopy. Royal Society of Chemistry, CambridgeGoogle Scholar
  36. 36.
    Martens H, Naes T (1989) Multivariate calibration. Wiley, New YorkGoogle Scholar
  37. 37.
    Beebe KR, Pell RJ, Seasholtz MB (1998) Chemometrics a practical guide. Wiley, New YorkGoogle Scholar
  38. 38.
    Agnew-Heard KA, Shamsi SA, Warner IM (2000) Optimizing enantioseparation of phynylthiohydantoin amino acids with polymerized sodium n-undecanolyl-l-valinate in chiral electrokinetic. J Liq Chrom Rel Technol 23(9):1301–1317CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Sayo O. Fakayode
    • 1
  • Alicia A. Williams
    • 1
  • Marianna A. Busch
    • 2
  • Kenneth W. Busch
    • 2
  • Isiah M. Warner
    • 1
  1. 1.Department of ChemistryLouisiana State UniversityBaton RougeUSA
  2. 2.Department of Chemistry and BiochemistryBaylor UniversityWacoUSA

Personalised recommendations