Journal of Fluorescence

, 15:777 | Cite as

Enhanced Fluorescence from Periodic Arrays of Silver Nanoparticles

  • T. D. Corrigan
  • S. Guo
  • R. J. Phaneuf
  • H. Szmacinski


Electron beam lithography was used to fabricate silver nanoparticle arrays and study the effects of geometrical properties of particles on metal-enhanced fluorescence. Nanoparticle size, shape, interparticle spacing, and nominal thickness were varied in a combinatorial pattern for investigation of the particle plasmon resonance effect on enhancement of fluorescence from three different fluorophores; Fluorescein, Cy3, and Cy5. A specific geometric property for optimal enhancement from each fluorophore was determined. For interparticle spacings greater or equal to 270 nm, the enhancement matched what is expected for a single-particle model. For those particles smaller than 210 nm, the enhancement was lower than for the larger spacing in the range studied. Triangular-shaped particles gave similar enhancement to those of square-shaped particles. This combinatorial pattern by e-beam lithography was found to be useful for studying how individual parameters enhance the fluorescence that are important for rational design of enhanced fluorescence sensors.


Fluorescence particle plasmon resonance electron-beam lithography metallic nanoparticles Cy3 Cy5 


  1. 1.
    D. L. Jeanmaire and R. P. van Duyne (1977). J. Electroanal. Chem. 84, 1.CrossRefGoogle Scholar
  2. 2.
    M. G. Albrecht and J. A. Creighton (1977). J. Am. Chem. Soc. 99, 5215.CrossRefGoogle Scholar
  3. 3.
    A. M. Glass, P. F. Liao, J. G. Bergman, and D. H. Olson (1980). Opt. Lett. 5(9), 368–370.CrossRefPubMedGoogle Scholar
  4. 4.
    S. Garoff, D. A. Weitz, T. J. Gramila, and C. D. Hanson (1981). Opt. Lett. 6(5), 245–247.CrossRefPubMedGoogle Scholar
  5. 5.
    A. M. Glass, A. Wokaun, J. P. Heritage, J. P. Bergman, P. F. Liao, and D. H. Olson (1981). Phys. Rev. B 24, 4906.CrossRefGoogle Scholar
  6. 6.
    G. Ritchie and E. Burstein (1981). Phys. Rev. B 24, 4843.CrossRefGoogle Scholar
  7. 7.
    J. I. Gersten and A. Nitzan (1985). Surf. Sci. 158, 165–189.CrossRefGoogle Scholar
  8. 8.
    S. Garoff, D. A. Weitz, M. S. Alvarez, and J. I. Nitzan (1984). J. Chem. Phys. 81(11), 5189–5280.CrossRefGoogle Scholar
  9. 9.
    M. Moskovitz (1985). Rev. Mod. Phys. 57(3), 783–826.CrossRefGoogle Scholar
  10. 10.
    A. Wokaun (1985). Mol. Phys. 56, 1–33.CrossRefGoogle Scholar
  11. 11.
    D. A. Weitz, S. Garoff, J. I. Gersten, and A. Nitzan (1983). J. Chem. Phys. 78(9), 5324–5338.CrossRefGoogle Scholar
  12. 12.
    K. Sokolov, G. Chumanov, and T. M. Cotton (1998). Anal. Chem. 70, 3998–3905.CrossRefGoogle Scholar
  13. 13.
    P. J. Tarcha, J. DeSaja-Gonzales, S. Rodriguez-Llorente, and R. Aroca (1999). Appl. Spectrosc. 53, 43–48.CrossRefGoogle Scholar
  14. 14.
    T. Liberman and W. Knoll (2000). Colloids Surf. A 171, 115–130.CrossRefGoogle Scholar
  15. 15.
    J. R. Lakowicz (2001). Anal. Biochem. 298, 1–24.CrossRefPubMedGoogle Scholar
  16. 16.
    N. Stich, A. Gandhum, V. Matushin, C. Maier, G. Bauer, and T. Schalkhammer (2001). J. Nanosci. Nanotechnol. 1(1), 397–405.CrossRefPubMedGoogle Scholar
  17. 17.
    J. Malicka, I. Gryczynski, and J. R. Lakowicz (2003). Anal. Chem. 75, 4408–4414.CrossRefPubMedGoogle Scholar
  18. 18.
    J. R. Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski, and C. D. Geddes (2003). J. Phys. D: Appl. Phys. 36, R240–R249.CrossRefGoogle Scholar
  19. 19.
    F. Yu, D. Yao, and W. Knoll (2003). Anal. Chem. 75, 2610–2617.CrossRefPubMedGoogle Scholar
  20. 20.
    T. R. Jensen, R. D. Malinsky, C. L. Haynes, and R. P. van Duyne (2000). J. Phys. Chem. B 104, 10549–10556.Google Scholar
  21. 21.
    W. Gotschy, K. Vonmetz, A. Leitner, and F. R. Aussenegg (1996). Appl. Phys. B 63, 381–384.Google Scholar
  22. 22.
    N. Felidj, J. Aubard, G. Levi, J. R. Kren, A. Hohenau, S. Schider, A. Leitner, and F. R. Aussenegg (2003). Appl. Phys. Lett. 82(18), 3095–3097.CrossRefGoogle Scholar
  23. 23.
    O. J. F. Martin (2002). In J. Tominaga and D. P. Tsai (Eds.), Optical Technologies, Springer, Heidelberg, pp. 203–228.Google Scholar
  24. 24.
    J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz (2001). Phys. Rev. B 64, 235402.CrossRefGoogle Scholar
  25. 25.
    R. Jin, Y.-W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng (2001). Science 294, 1901–1903.CrossRefPubMedGoogle Scholar
  26. 26.
    J. Kummerlen, A. Leitner, H. Brunner, F. R. Ausenegg, and A. Wokaun (1983). Mol. Phys. 80(5), 1031–1046.CrossRefGoogle Scholar
  27. 27.
    T. Pal, N. R. Jana, and T. Sau (1997). Radiat. Phys. Chem. 49(1), 127–1130.CrossRefGoogle Scholar
  28. 28.
    W. Rechberger, A. Hohenau, A. Leitner, J. R. Kren, B. Lamprecht, and F. R. Aussenegg (2003). Opt. Commun. 220, 137–141.CrossRefGoogle Scholar
  29. 29.
    J. R. Lakowicz (2005). Anal. Biochem. 337, 171–194.CrossRefPubMedGoogle Scholar
  30. 30.
    I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz (2004). Anal. Biochem. 324, 170–182.CrossRefPubMedGoogle Scholar
  31. 31.
    H. Szmacinski, J. R. Lakowicz, and M. L. Johnson (1994). Methods Enzymol. 240, 723–748.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • T. D. Corrigan
    • 1
  • S. Guo
    • 1
  • R. J. Phaneuf
    • 1
  • H. Szmacinski
    • 2
  1. 1.Department of Materials Science and EngineeringUniversity of Maryland and Laboratory for Physical Sciences
  2. 2.Microcosm Inc.Columbia

Personalised recommendations