Advertisement

Journal of Fluorescence

, 15:769 | Cite as

The Anthracen-9-ylmethyloxy Unit: An Underperforming Motif Within the Fluorescent PET (Photoinduced Electron Transfer) Sensing Framework

  • David C. Magri
  • John F. Callan
  • A. Prasanna de Silva
  • David B. Fox
  • Nathan D. McClenaghan
  • K. R. A. Samankumara Sandanayake
Article

Abstract

Compound 2, which was designed to act as a fluorescent sensor for calcium according to the PET (Photoinduced Electron Transfer) principle, shows a relatively small Ca2+-induced fluorescence enhancement factor (FE) of 1.8 whereas its close relative 1 is known to display a far higher FE value of 16. Though designed as fluorescent PET sensors for solvent polarity, compounds 5 and 6 also show negligible fluorescence enhancement as their environments are made progressively less polar even though their relatives 3 and 4 show limiting FE values of 53 and 3, respectively. Indeed, 3 and 4 are useful since they are fluorescent sensors for solvent polarity without being affected by Bronsted acidity. The poor sensory performance of 2, 5, and 6 relative to their cousins is attributed to the presence of an oxygen proximal to the 9-position of an anthracene unit, which opens up a CT (charge transfer) channel. Normal PET sensing service is resumed when the offending oxygen is deleted.

Keywords

Fluorescent sensors ion sensors polarity sensors PET electron transfer 

References

  1. 1.
    A. J. Bryan, A. P. de Silva, S. A. de Silva, R. A. D. D. Rupasinghe, and K. R. A. S. Sandanayake (1989). Photoinduced electron-transfer as a general design logic for fluorescent molecular sensors for cations. Biosensors 4, 169–179.Google Scholar
  2. 2.
    (a) R. A. Bissell, A. P. de Silva, H. Q. N. Gunaratne, P. L. M. Lynch, G. E. M. Maguire, and K. R. A. S. Sandanayake (1992). Molecular fluorescent signaling with “fluor-spacer-receptor”systems-approaches to sensing and switching devices via supramolecular photophysics. Chem. Soc. Rev. 21, 187–195; (b) R. A. Bissell, A. P. de Silva, H. Q. N. Gunaratne, P. L. M. Lynch, G. E. M. Maguire, C. P. McCoy, and K. R. A. S. Sandanayake (1993). Fluorescent PET (photoinduced electron-transfer) sensors. Top. Curr. Chem. 168, 223–264; (c) A. W. Czarnik (1994). Chemical communication in water using fluorescent chemosensors. Acc. Chem. Res. 27, 302–308; (d) L. Fabbrizzi and A. Poggi (1995). Sensors and switches from supramolecular chemistry. Chem. Soc. Rev. 24, 197–202; (e) A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C. P. McCoy, J. T. Rademacher, and T. E. Rice (1997). Signaling recognition events with fluorescent sensors and switches. Chem. Rev. 97, 1515–1566; (f) H. Kojima and T. Nagano (2000). Fluorescent indicators for nitric oxide. Adv. Mater. 12, 763–769; (g) K. Rurack (2001). Flipping the light switch “ON”—the design of sensor molecules that show cation-induced fluorescence enhancement with heavy and transition metal ions. Spectrochim. Acta A 57, 2161–2195; (h) K. Rurack and U. Resch-Genger (2002). Rigidization, preorientation, and electronic decoupling—the “magic triangle” for the design of highly efficient fluorescent sensors and switches. Chem. Soc. Rev. 31, 116–127; (i) R. Martinez-Manez and F. Sancenon (2003). Fluorogenic and chromogenic chemosensors and reagents for anions. Chem. Rev. 103, 4419–4476. (j) J. F. Callan, A. P. de Silva, and D. C. Magri (2005). Luminescent sensors and switches in the 21st century. Tetrahedron 61, 8551–8588.Google Scholar
  3. 3.
    (a) A. W. Czarnik (Ed.) (1993). Fluorescent Chemosensors of Ion and Molecule Recognition, ACS Symposium Series 538, American Chemical Society, Washington, DC; (b) A. W. Czarnik and J.-P. Desvergne (Eds.) (1997). Chemosensors of Ion and Molecule Recognition, Kluwer, Dordrecht, The Netherlands; (c) J. R. Lakowicz (1999). Principles of Fluorescence Spectroscopy, 2nd ed., Plenum, New York; (d) B. Valeur (2001). Molecular Fluorescence, Wiley-VCH, Germany. Weinheim; (e) V. Balzani, M. Venturi, and A. Credi (2003). Molecular Devices and Machines, Wiley-VCH, Weinheim, Germany.Google Scholar
  4. 4.
    S. C. Burdette, G. K. Walkup, B. Spingler, R. Y. Tsien, and S. J. Lippard (2001). Fluorescent sensors for Zn2+ based on a fluorescein platform: Synthesis, properties, and intracellular distribution. J. Am. Chem. Soc. 123, 7831–7841; H. R. He, M. A. Mortellaro, M. J. P. Leiner, S. T. Young, R. J. Fraatz, and J. K. Tusa (2003). A fluorescent chemosensor for sodium based on photoinduced electron transfer. Anal. Chem. 75, 549–555; H. R. He, M. A. Mortellaro, M. J. P. Leiner, R. J. Fraatz, and J. K. Tusa (2003). A fluorescent sensor with high selectivity and sensitivity for potassium in water. J. Am. Chem. Soc. 125, 1468–1469; E. M. Nolan and S. J. Lippard (2003). A “Turn-On” fluorescent sensor for the selective detection of mercuric ion in aqueous media. J. Am. Chem. Soc. 125, 14270–14271; X. Guo, X. Qian, and L. Jia (2004). A highly selective and sensitive fluorescent chemosensor for Hg2+ in neutral buffer aqueous solution. J. Am. Chem. Soc. 126, 2272–2273.Google Scholar
  5. 5.
    (a) A. P. de Silva, H. Q. N. Gunaratne, J.-L. Habib-Jiwan, C. P. McCoy, T. E. Rice, and J.-P. Soumillion (1995). New fluorescent model compounds for the study of photoinduced electron-transfer—the influence of a molecular electric-field in the excited-state. Angew. Chem. Int. Ed. Engl. 34, 1728–1731; (b) A. P. de Silva and T. E. Rice (1999). A small supramolecular system which emulates the unidirectional, path-selective photoinduced electron transfer (PET) of the bacterial photosynthetic reaction centre (PRC). Chem. Commun. 163–164.Google Scholar
  6. 6.
    A. P. de Silva, A. Goligher, H. Q. N. Gunaratne, and T. E. Rice (2003). The pH-dependent fluorescence of pyridylmethyl-4-amino-1,8-naphthalimides. ARKIVOC, 229–243.Google Scholar
  7. 7.
    Y. Q. Gao and R. A. Marcus (2002). Theoretical investigation of the directional electron transfer in 4-aminonaphthalimide compounds. J. Phys. Chem. A 106, 1956–1960.CrossRefGoogle Scholar
  8. 8.
    R. A. Bissell, A. P. de Silva, W. T. M. L. Fernando, S. T. Patuwathavithana, and T. K. S. D. Samarasinghe (1991). Fluorescent PET (photoinduced electron-transfer) indicators for solvent polarity with quasi-step functional-response. Tetrahedron Lett. 32, 425–428.Google Scholar
  9. 9.
    A. P. de Silva and K. R. A. S. Sandanayake (1991). Fluorescent PET (photoinduced electron-transfer) sensors for alkali cations—optimization of sensor action by variation of structure and solvent. Tetrahedron Lett. 32, 421–424.Google Scholar
  10. 10.
    A. P. de Silva and H. Q. N. Gunaratne (1990). Fluorescent PET (photoinduced electron-transfer) sensors selective for submicromolar calcium with quantitatively predictable spectral and ion-binding properties. J. Chem. Soc., Chem. Commun. 186–187.Google Scholar
  11. 11.
    G. Grynkiewicz, M. Poenie, and R. Y. Tsien (1985). A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260, 3440–3450.PubMedGoogle Scholar
  12. 12.
    M. Bullpitt, W. Kitching, D. Doddrell, and W. Adcock (1976). Substituent effect of bromomethyl group—C-13 magnetic-resonance study. J. Org. Chem. 41, 760–766.CrossRefGoogle Scholar
  13. 13.
    J. B. Birks (1970). Photophysics of Aromatic Molecules, Wiley, London.Google Scholar
  14. 14.
    R. Y. Tsien (1980). New calcium indicators and buffers with high selectivity against magnesium and protons—design, synthesis, and properties of prototype structures. Biochemistry 19, 2396–2404.CrossRefPubMedGoogle Scholar
  15. 15.
    A. P. de Silva, H. Q. N. Gunaratne, and P. L. M. Lynch (1995). Luminescence and charge-transfer. 4. “On-off” fluorescent PET (photoinduced electron-transfer) sensors with pyridine receptors-,3-diaryl-5-pyridyl-4,5-dihydropyrazoles. J. Chem. Soc. Perkin Trans. 2, 685–690.Google Scholar
  16. 16.
    J. R. Jefferson, J. B. Hunt, and A. Ginsburg (1990). Characterization of indo-1 and quin-2 as spectroscopic probes for Zn2+-protein interactions. Anal. Biochem. 187, 328–336.CrossRefPubMedGoogle Scholar
  17. 17.
    D. Atar, P. H. Backx, M. M. Appel, W. D. Gao, and E. Marban (1995). Excitation–transcription coupling mediated by zinc influx through voltage-dependent calcium channels. J. Biol. Chem. 270, 2473–2477.CrossRefPubMedGoogle Scholar
  18. 18.
    A. Weller (1968). Electron-transfer and complex formation in the excited state. Pure Appl. Chem. 16, 115–123; D. Rehm and A. Weller (1970). Kinetics of fluorescence quenching by electron and H-atom transfer. Isr. J. Chem. 8, 259–269.Google Scholar
  19. 19.
    (a) H. Siegerman (1975). in N. L. Weinberg (Ed.), Techniques of Electroorganic Synthesis – Part II, Wiley, New York, p. 667; C. K. Mann and K. K. Barnes (1970). Electrochemical Reactions in Non-Aqueous Systems, Dekker, New York; (b) Z. R. Grabowski and J. Dobkowski (1983). Twisted intramolecular charge-transfer (TICT) excited-states—energy and molecular-structure. Pure Appl. Chem. 55, 245–252.Google Scholar
  20. 20.
    H. Kawai, T. Nagamura, T. Mori, and K. Yoshida (1999). Picosecond mechanism of metal-ion-sensitive fluorescence of phenylimidazoanthraquinone with azacrown. J. Phys. Chem. A 103, 660–664.CrossRefGoogle Scholar
  21. 21.
    A. Castellan, J.-M. Lacoste, and H. Bouas-Laurent (1979). Study of nonconjugated bichromophoric systems, the so-called jaw photochromic materials. 1. Photocyclomerization and fluorescence of bis-9-anthrylmethyl ethers. J. Chem. Soc., Perkin Trans. 2, 411–419.Google Scholar
  22. 22.
    S. Iwata, H. Matsuoka, and K. Tanaka (1997). Alkaline earth metal-sensing anthracene fluorophore-hosts. J. Chem. Soc., Perkin Trans. 1, 1357–1360.CrossRefGoogle Scholar
  23. 23.
    J.-P. Desvergne, N. Bitit, A. Castellan, H. Bouas-Laurent, and J. C. Soulignac (1987). Kinetic and thermodynamic studies on new intramolecular mixed excimers in anthracene phenanthrene and anthracene pyrene linked systems. J. Lumin. 37, 175–181.CrossRefGoogle Scholar
  24. 24.
    C. Reichardt (1994). Solvatochromic dyes as solvent polarity indicators. Chem. Rev. 94, 2319–2358.CrossRefGoogle Scholar
  25. 25.
    (a) K. Kalyanasundaram and J. K. Thomas (1977). Solvent-dependent fluorescence of pyrene-3-carboxaldehyde and its applications in estimation of polarity at micelle–water interfaces. J. Phys. Chem. 81, 2176–2180; (b) R. M. Hermant, N. A. C. Bakker, T. Scherer, B. Krijnen, and J. W. Verhoeven (1990). Systematic study of a series of highly fluorescent rod-shaped donor–acceptor systems. J. Am. Chem. Soc. 112, 1214–1221; (c) A. Jacobsen, A. Petric, D. Hogenkamp, A. Sinur, and J. R. Barrio (1996). 1, 1-dicyano-2-[6-(dimethylamino)naphthalen-2-yl]propene (DDNP): A solvent polarity and viscosity sensitive fluorophore for fluorescence microscopy. J. Am. Chem. Soc. 118, 5572–5579.Google Scholar
  26. 26.
    M. J. Kamlet, J.-L. M. Abboud, and R. W. Taft (1981). An examination of linear salvation energy relationships. Prog. Phys. Org. Chem. 13, 485–630.CrossRefGoogle Scholar
  27. 27.
    M. D. P. de Costa, A. P. de Silva, and S. T. Pathirana (1987). 2-dimensional fluorescent sensors—the different dependences of the fluorescence band position and the fluorescence quantum yield of 1,5-diphenyl-3-vinyl-delta-2-pyrazoline upon solvent dipolarity and hydrogen-bond acidity. Can. J. Chem. 65, 1416–1419.CrossRefGoogle Scholar
  28. 28.
    M. A. Winnik and D. C. Dong (1984). The Py scale of solvent polarities. Can. J. Chem. 62, 2560–2565; W. E. Acree, D. C. Wilkins, S. A. Tucker, J. M. Griffin, and J. R. Powell (1994). Spectrochemical investigations of preferential solvation. 2. Compatibility of thermodynamic models versus spectrofluorometric probe methods for tautomeric solutes dissolved in binary-mixtures. J. Phys. Chem. 98, 2537–2544; N. Barrash-Shiftan, B. Brauer, and E. Pines (1998). Solvent dependence of pyranine fluorescence and UV-visible absorption spectra. J. Phys. Org. Chem. 11, 743–750; B. Strehmel, A. M. Sarker, J. H. Malpert, V. Strehmel, H. Seifert, and D. C. Neckers (1999). Effect of aromatic ring substitution on the optical properties, emission dynamics, and solid-state behavior of fluorinated oligophenylenevinylenes. J. Am. Chem. Soc. 121, 1226–1236.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • David C. Magri
    • 1
  • John F. Callan
    • 1
    • 2
  • A. Prasanna de Silva
    • 1
  • David B. Fox
    • 1
  • Nathan D. McClenaghan
    • 3
  • K. R. A. Samankumara Sandanayake
    • 4
  1. 1.School of ChemistryQueen’s UniversityBelfast
  2. 2.School of PharmacyRobert Gordon UniversityAberdeen
  3. 3.Laboratoire de Chimie Organique et OrganométalliqueTalenceFrance
  4. 4.Phosphagenics R&D Laboratory, Department of Biochemistry and Molecular BiologyMonash UniversityVictoriaAustralia

Personalised recommendations