Advertisement

Journal of Fluorescence

, 15:741 | Cite as

Fluorescence Dynamics of DNA Condensed by the Molecular Crowding Agent Poly(Ethylene Glycol)

  • Mamata H. Kombrabail
  • G. KrishnamoorthyEmail author
Article

Abstract

Condensation of extended DNA into compact structures is encountered in a variety of situations, both natural and artificial. While condensation of DNA has been routinely carried out by the use of multivalent cations, cationic lipids, detergents, and polyvalent cationic polymers, the use of molecular crowding agents in condensing DNA is rather striking. In this work, we have studied the dynamics of plasmid DNA condensed in the presence of a molecular crowding agent, polyethylene glycol (PEG). Steady-state and time-resolved fluorescence of the recently established condensation-indicating DNA binder, YOYO-1 [G. Krishnamoorthy, G. Duportail, and Y. Mely (2002), Biochemistry 41, 15277–15287] was used in inferring the dynamic aspects of DNA condensates. It is shown that DNA condensed by PEG is more flexible and less compact when compared to DNA condensed by binding agents such as polyethyleneimine. The relevance of such differences in dynamics toward functional aspects of condensed DNA is discussed.

Keywords

Condensed DNA fluorescence anisotropy decay polyethyleneglycol molecular crowding 

References

  1. 1.
    G. Arents and E. N. Moudrianakis (1993). Proc. Natl. Acad. Sci. USA. 90, 10489–10493.CrossRefGoogle Scholar
  2. 2.
    J. A. Shellman and N. Parthasarathy (1984). J. Mol. Biol. 175, 313–329.CrossRefGoogle Scholar
  3. 3.
    D. Goula, C. Benoist, S. Mantero, S. Merlo, G. Levi, and B. A. Demeneix (1998). Gene Ther. 5, 1291–1295.CrossRefPubMedGoogle Scholar
  4. 4.
    A. Aris and A. Villaverde (2004). Trends Biotechnol. 22, 371–377.CrossRefPubMedGoogle Scholar
  5. 5.
    H. Petry, C. Goldmann, O. Ast, and W. Luke (2003). Curr. Opin. Mol. Ther. 5, 524–528.PubMedGoogle Scholar
  6. 6.
    A. El Aneed (2004). J. Control Release 94, 1–14.CrossRefPubMedGoogle Scholar
  7. 7.
    K. Minagawa, Y. Matsuzawa, K. Yoshikawa, A. R. Khokhlov, and M. Doi (1994). Biopolymers 34, 555–558.CrossRefGoogle Scholar
  8. 8.
    V. A. Bloomfield (1996). Curr. Opin. Struct. Biol. 6, 334–341.CrossRefPubMedGoogle Scholar
  9. 9.
    J. P. Behr (1993). Acc. Chem. Res. 26, 274–278.CrossRefGoogle Scholar
  10. 10.
    M. X. Tang and F. C. Szoka (1997). Gene Ther. 4, 823–832.CrossRefPubMedGoogle Scholar
  11. 11.
    G. Krishnamoorthy, G. Duportail, and Y. Mely (2002). Biochemistry 41, 15277–15287.CrossRefPubMedGoogle Scholar
  12. 12.
    A. D. Miller (1998). Angew. Chem. Int. Ed. 37, 1768–1785.CrossRefGoogle Scholar
  13. 13.
    Y. S. Tarahovsky, V. A. Rakhmanova, R. M. Epand, and R. C. MacDonald (2002). Biophys. J. 82, 264–273.CrossRefPubMedGoogle Scholar
  14. 14.
    S. M. Mel’nikov, V. G. Sergeyev, Y. S. Melnikova, and K. Yoshikawa (1997). J. Chem. Soc. (Faraday Trans.) 93, 283–288.CrossRefGoogle Scholar
  15. 15.
    G. Krishnamoorthy, B. Roques, J-L. Darlix, and Y. Mely (2003). Nucleic Acids Res. 31, 5425–5432.CrossRefPubMedGoogle Scholar
  16. 16.
    P. G. Arscott, C. Ma, J. R. Wenner, and V. A. Bloomfield (1995). Biopolymers 36, 345–364.CrossRefPubMedGoogle Scholar
  17. 17.
    R. Marquet and C. Houssier (1991). J. Biomol. Struct. Dyn. 9, 159–167.PubMedGoogle Scholar
  18. 18.
    V. A. Bloomfield (1997). Bioplymers 44, 269–282.CrossRefGoogle Scholar
  19. 19.
    D. C. Rau and V. A. Parsegian (1992). Biophys. J. 61, 246–271.CrossRefPubMedGoogle Scholar
  20. 20.
    Y. Fang and J. H. Ho (1998). Nucleic Acids Res. 26, 588–593.CrossRefPubMedGoogle Scholar
  21. 21.
    L. Lerman (1971). Proc. Natl. Acad. Sci. USA. 68, 1886–1890.CrossRefGoogle Scholar
  22. 22.
    S. R. Seth and D. Leckband (1997). Proc. Natl. Acad. Sci. 94, 8399–8404.CrossRefGoogle Scholar
  23. 23.
    V. V. Vasilevskaya, A. R. Khokhlov, Y. Matsuzawa, and K. Yoshikawa (1995). J. Chem. Phys. 102, 6595–6602.CrossRefGoogle Scholar
  24. 24.
    K. Yoshikawa (2001). Adv. Drug Deliv. Rev. 52, 235–244.CrossRefPubMedGoogle Scholar
  25. 25.
    A. N. Naimushin, N. Quach, B. S. Fujimoto, and J. M. Schurr (2001). Biopolymers 58, 204–217.CrossRefPubMedGoogle Scholar
  26. 26.
    N. Tokuriki, M. Kinjo, S. Negi, M. Hoshino, Y. Goto, I. Urabe, and T. Yomo (2004). Protein Sci. 13, 125–133.CrossRefPubMedGoogle Scholar
  27. 27.
    A. Minton (2000). Curr. Opin. Struct. Biol. 10, 34–39.CrossRefPubMedGoogle Scholar
  28. 28.
    A. Minton (2001). J. Biol. Chem. 276, 10577–10580.CrossRefPubMedGoogle Scholar
  29. 29.
    R. J. Ellis (2001). Trends Biochem. Sci. 26, 597–604.CrossRefPubMedGoogle Scholar
  30. 30.
    D. Fischer, T. Bieber, Y. Li, H.-P. Elsasser, and T. Kissel (1999). Pharm. Res. 16, 1273–1279.CrossRefPubMedGoogle Scholar
  31. 31.
    M. H. Kombrabail and G. Krishnamoorthy (2003). J. Fluoresc. 13, 339–347.CrossRefGoogle Scholar
  32. 32.
    D. Porschke (1984). Biochemistry 41, 15277–15287.Google Scholar
  33. 33.
    D. D. Dunlap, A. Maggi, M. R. Soria, and L. Monaco (1997). Nucleic Acids Res. 25, 3095–3101.CrossRefPubMedGoogle Scholar
  34. 34.
    L. Donna and P. Serwer (1994). J. Mol. Biol. 242, 547–558.CrossRefGoogle Scholar
  35. 35.
    J. Naghizadeh and A. R. Massih (1978). Phys. Rev. Lett. 40, 1299–1302.CrossRefGoogle Scholar
  36. 36.
    C. B. Post and B. H. Zimm (1979). Biopolymers 18, 1487–1501.CrossRefGoogle Scholar
  37. 37.
    H. L. Frisch and S. J. Fesciyan (1979). J. Polym. Sci. Polym. Lett. Ed. 17, 309–315.Google Scholar
  38. 38.
    A. Y. Grosberg, I. Y. Erukhimovich, and E. I. Shakhnovich (1981). Biophyics (USSR) 26, 415–420.Google Scholar
  39. 39.
    A. Y. Grosberg, I. Y. Erukhimovich, and E. I. Shakhnovich (1981). Biophysics (USSR) 26, 897–905.Google Scholar
  40. 40.
    J. M. Schurr, B. S. Fujimoto, P. Wu, and L. Song (1992). In J. R. Lakowicz (Ed.), Topics in Fluorescence Spectroscopy, Vol. 3, Plenum, New York, pp. 137–229.Google Scholar
  41. 41.
    A. Srivastava and G. Krishnamoorthy (1997). Arch. Biochem. Biophys. 340, 159–167.CrossRefPubMedGoogle Scholar
  42. 42.
    J. R. Lakowicz (2000). Principle of Fluorescence spectroscopy, Plenum, New York.Google Scholar
  43. 43.
    K. Luby-Phelps, S. Mazumdar, R. B. Mazumdar, L. A. Earnst, W. Galbraith, and A. S. Waggoner (1993). Biophys. J. 65, 236–242.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of Chemical SciencesTata Institute of Fundamental ResearchMumbaiIndia

Personalised recommendations