Journal of Fluorescence

, Volume 15, Issue 4, pp 569–584 | Cite as

Emerging Applications of Phosphorescent Metalloporphyrins

  • Dmitri B. Papkovsky
  • Tomás C. O’Riordan


The subject of phosphorescent metalloporphyrins is reviewed, focusing mainly on the development and application of Pt- and Pd-porphyrins. A summary of their general chemical and photophysical properties, and guidelines for rational design of the phosphorescent labels, bioconjugates and probes is given. Examples of different detection formats and particular bioanalytical applications developed in recent years are presented. The potential of phosphorescent porphyrin label methodology is discussed and compared to that of the long-decay fluorescent lanthanide chelates and other common fluorophores.


Metalloporphyrins labels probes phosphorescence time-resolved fluorescence bioanalytical applications 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. E. Falk (1964). Porphyrins and Metalloporphyrins, Elsevier, Amsterdam.Google Scholar
  2. 2.
    M. Gouterman (1961). Spectra of porphyrins J. Mol. Spectrosc. 6, 138–163.CrossRefGoogle Scholar
  3. 3.
    M. Gouterman (1959). Study of the effects of substitution on the absorption spectra of porphin. J. Chem. Phys. 30(5), 1139–1161.CrossRefGoogle Scholar
  4. 4.
    M. Gouterman and G. Khalil (1974). Porphyrin free base phosphorescence. J. Mol. Spectrosc. 53(1), 88–100.CrossRefGoogle Scholar
  5. 5.
    M. Gouterman (1978). In D. Dolphin (Ed.), The Porphyrins, Academic Press, New York.Google Scholar
  6. 6.
    J. B. Callis, J. M. Knowles, and M. Gouterman (1973). Porphyrins. XXVI. Triplet excimer quenching of free base, zinc, palladium, and platinum complexes. J. Phys. Chem. 77(2), 154–157.CrossRefPubMedGoogle Scholar
  7. 7.
    D. Eastwood and M. Gouterman (1970). Porphyrins. XVIII. Luminescence of (Co), (Ni), Pd, Pt complexes J. Mol. Spectrosc. 35(3), 359–375.CrossRefGoogle Scholar
  8. 8.
    P. G. Seybold and M. Gouterman (1969). Porphyrins. 13. Fluorescence spectra and quantum yields. J. Mol. Spectrosc. 31(1), 1.CrossRefGoogle Scholar
  9. 9.
    J. B. Callis, M. Gouterman, Y. M. Jones, and B. H. Henderson (1971). Porphyrins. XXII. Fast fluorescence, delayed fluorescence, and quasiline structure in palladium and platinum complexes. J. Mol. Spectrosc. 39(3), 410–420.CrossRefGoogle Scholar
  10. 10.
    M. Kaska (1952). Collisional perturbation of spin–orbit coupling and the mechanism of fluorescence quenching. A visual demonstration of the perturbation. J. Chem. Phys. 20, 71–74.CrossRefGoogle Scholar
  11. 11.
    A. Harriman (1981). Luminescence of porphyrins and metalloporphyrins. 3. Heavy-atom effects. J. Chem. Soc. Faraday Trans. II 77(7), 1281–1291.CrossRefGoogle Scholar
  12. 12.
    L. Bajema, M. Gouterman, and C. B. Rose (1971). Porphyrins. XXIII. Fluorescence of the second excited singlet and quasiline structure of zinc tetrabenzporphin. J. Mol. Spectrosc. 39(3), 421–431.CrossRefGoogle Scholar
  13. 13.
    I. E. Zalesskii, V. N. Kotlo, A. N. Sevchenko, K. N. Solov’ev, and S. F. Shkirman (1973). Dokl. Akad. Nauk. Sssr. 210, 312.Google Scholar
  14. 14.
    I. E. Zalesskii, V. N. Kotlo, A. N. Sevchenko, K. N. Solov’ev, and S. F. Shkirman (1974). Dokl. Akad. Nauk. Sssr. 218, 324.Google Scholar
  15. 15.
    C. A. Parker (1968). Photoluminescence of Solutions, Elsevier, Amsterdam.Google Scholar
  16. 16.
    D. B. Papkovsky and G. V. Ponomarev (2001). Spectral-luminescent study of the porphyrin-diketones and their complexes. Spectrochim. Acta A 57(9), 1897–1905.Google Scholar
  17. 17.
    D. B. Papkovsky, G. V. Ponomarev, W. Trettnak, and P. O’Leary (1995). Phosphorescent complexes of porphyrin ketones: Optical properties and application to oxygen sensing. Anal. Chem. 67, 4112–4117.CrossRefGoogle Scholar
  18. 18.
    S. B. Brown, M. Shillcock, and P. Jones (1976). Equilibrium and kinetic studies of the aggregation of porphyrins in aqueous solution. Biochem. J. 153(2), 279–285.PubMedGoogle Scholar
  19. 19.
    A. P. Savitski, E. V. Vorobyova, I. V. Berezin, and N. N. Ugarova (1981). Acid–base properties of protoporphyrin-Ix—Its dimethyl ester and heme solubilized on surfactant micelles—Spectrophotometric and fluorometric titration. J. Colloid Interface Sci. 84(1), 175–181.CrossRefGoogle Scholar
  20. 20.
    C. R. Lambert, E. Reddi, J. D. Spikes, M. A. Rodgers, and G. Jori (1986). The effects of porphyrin structure and aggregation state on photosensitized processes in aqueous and micellar media. Photochem. Photobiol. 44(5), 595–601.PubMedGoogle Scholar
  21. 21.
    J. M. Vanderkooi, G. Maniara, T. J. Green, and D. F. Wilson (1987). An optical method for measurement of dioxygen concentration based upon quenching of phosphorescence. J. Biol. Chem. 262(12), 5476–5482.PubMedGoogle Scholar
  22. 22.
    G. Khalil, M. Gouterman, and E. Green (1989). Method for measuring oxygen concentration, US Patent, 4,810,655.Google Scholar
  23. 23.
    A. Blum and L. I. Grossweiner (1985). Singlet oxygen generation by hematoporphyrin-IX, uroporphyrin-I and hematoporphyrin derivative at 546 nm in phosphate buffer and in the presence of egg phosphatidylcholine liposomes. Photochem. Photobiol. 41(1), 27–32.PubMedGoogle Scholar
  24. 24.
    T. J. Dougherty and S. L. Marcus (1992). Photodynamic therapy. Eur. J. Cancer 28A(10), 1734–1742.CrossRefPubMedGoogle Scholar
  25. 25.
    M. Trinkel, W. Trettnak, and C. Kolle (2000). Oxygen trace analysis utilising a miniaturised luminescence lifetime-based sensor instrumentation. Quim. Anal. 19, 112–117.Google Scholar
  26. 26.
    O. Stern and M. Volmer (1919). Uber die ablingungszeit der fluoreszenz. Physik. Zeitschr 20, 183–188.Google Scholar
  27. 27.
    D. B. Papkovsky (2004). Methods in optical oxygen sensing: Protocols and critical analyses. Method Enzymol. 381, 715–735.Google Scholar
  28. 28.
    J. N. Demas, B. A. DeGraff, and P. B. Coleman (1999). Oxygen sensors based on luminescence quenching. Anal. Chem. 71(23), 793A–800A.PubMedGoogle Scholar
  29. 29.
    D. F. Wilson, J. M. Vanderkooi, T. J. Green, G. Maniara, S. P. DeFeo, and D. C. Bloomgarden (1987). A versatile and sensitive method for measuring oxygen. Adv. Exp. Med. Biol. 215, 71–77.PubMedGoogle Scholar
  30. 30.
    L. W. Lo, C. J. Koch, and D. F. Wilson (1996). Calibration of oxygen-dependent quenching of the phosphorescence of Pd-meso-tetra (4-carboxyphenyl) porphine: A phosphor with general application for measuring oxygen concentration in biological systems. Anal. Biochem. 236(1), 153–160.CrossRefPubMedGoogle Scholar
  31. 31.
    S. A. Vinogradov and D. F. Wilson (1995). Metallotetraben- zoporphyrins—New phosphorescent probes for oxygen measurements. J. Chem. Soc. Perkin Trans. 2(1), 103–111.Google Scholar
  32. 32.
    J. Hynes, S. Floyd, A. E. Soini, R. O’Connor, and D. B. Papkovsky (2003). Fluorescence-based cell viability screening assays using water-soluble oxygen probes. J. Biomol. Screen. 8(3), 264–272.CrossRefPubMedGoogle Scholar
  33. 33.
    A. P. Savitskii, D. B. Papkovskii, G. V. Ponomarev, and I. V. Berezin (1989). Phosphorescence immunoassay—Metalloporphyrins as an alternative to rare-earth fluorescent labels. Dokl. Akad. Nauk. Sssr. 304(4), 1005–1008.PubMedGoogle Scholar
  34. 34.
    R. R. de Haas, R. P. van Gijlswijk, E. B. van der Tol, H. J. Zijlmans, T. Bakker-Schut, J. Bonnet, N. P. Verwoerd, and H. J. Tanke (1997). Platinum porphyrins as phosphorescent label for time-resolved microscopy. J. Histochem. Cytochem. 45(9), 1279–1292.PubMedGoogle Scholar
  35. 35.
    S. P. Martsev, V. Preygerzon, Y. I. Melnikova, Z. I. Kravchuk, G. V. Ponomarev, V. E. Lunev, and A. P. Savitsky (1995). Modification of monoclonal and polyclonal IgG with palladium(II) coproporphyrin-I—Stimulatory and inhibitory functional-effects induced by 2 different methods. J. Immunol. Methods 186(2), 293–304.CrossRefPubMedGoogle Scholar
  36. 36.
    Y. I. Melnikova, Z. I. Kravchuk, V. A. Preygerzon, and S. P. Martsev (1997). Functional activation of antibodies on modification with Pd(II) coproporphyrin I N-hydroxysuccinimide ester. Biochem. Moscow 62(8), 924–927.Google Scholar
  37. 37.
    M. M. Koskelin, A. E. Soini, N. J. Meltola, and G. V. Ponomarev (2002). Phosphorescent labeling reagents of platinum(II) and palladium(II) coproporphyrin-II. Preparation and performance characteristics. J. Porphyr. Phthalocya 6(7–8), 533–543.Google Scholar
  38. 38.
    A. E. Soini, D. V. Yashunsky, N. J. Meltola, and G. V. Ponomarev (2001). Preparation of monofunctional and phosphorescent palladium(II) and platinum(II) coproporphyrin labeling reagents. J. Porphyr. Phthalocya 5(10), 735–741.CrossRefGoogle Scholar
  39. 39.
    G. V. Ponomarev, D. V. Yashunsky, N. J. Meltola, and A. E. Soini (2001). Porphyrin compounds, their conjugates and assay methods based on the use of said conjugates, US Patent, 6,582,930.Google Scholar
  40. 40.
    A. E. Soini, D. V. Yashunsky, N. J. Meltola, and G. V. Ponomarev (2003). Influence of linker unit on performance of palladium(II) coproporphyrin labelling reagent and its bioconjugates. Luminescence 18(3), 182–192.CrossRefPubMedGoogle Scholar
  41. 41.
    T. C. O’Riordan, A. E. Soini, J. T. Soini, and D. B. Papkovsky (2002). Performance evaluation of the phosphorescent porphyrin label: Solid-phase immunoassay of alpha-fetoprotein. Anal. Chem. 74(22), 5845–5850.CrossRefPubMedGoogle Scholar
  42. 42.
    T. C. O’Riordan, A. E. Soini, and D. B. Papkovsky (2001). Monofunctional derivatives of coproporphyrins for phosphorescent labeling of proteins and binding assays. Anal. Biochem. 290(2), 366–375.CrossRefPubMedGoogle Scholar
  43. 43.
    H. J. Tanke, R. R. De Haas, G. Sagner, M. Ganser, and R. P. van Gijlswijk (1998). Use of platinum coproporphyrin and delayed luminescence imaging to extend the number of targets FISH karyotyping. Cytometry 33(4), 453–459.CrossRefPubMedGoogle Scholar
  44. 44.
    O. S. Fedorova, A. P. Savitskii, K. G. Shoikhet, and G. V. Ponomarev (1990). Palladium(II)-coproporphyrin-I as a photoactivable group in sequence-specific modification of nucleic-acids by oligonucleotide derivatives. FEBS Lett. 259(2), 335–337.CrossRefPubMedGoogle Scholar
  45. 45.
    P. J. O’Sullivan, M. Burke, A. E. Soini, and D. B. Papkovsky (2002). Synthesis and evaluation of phosphorescent oligonucleotide probes for hybridisation assays. Nucleic Acids Res. 30(21), e114.CrossRefPubMedGoogle Scholar
  46. 46.
    D. J. O’Shea, P. J. O’Sullivan, G. V. Ponomarev, and D. P. Papkovsky (2004). Post-PCR detection of nucleic acids using metalloporphyrin labels and time-resolved fluorescence. Anal. Chim. Acta. 537, 111–117.CrossRefGoogle Scholar
  47. 47.
    I. Hemmila and V.-M. Mukkala (2001). Time-resolution in fluorometry technologies, labels, and applications in bioanalytical assays. Crit. Rev. Clin. Lab. Sci. 38(6), 441–519.CrossRefGoogle Scholar
  48. 48.
    S. W. Englander, D. B. Calhoun, and J. J. Englander (1987). Biochemistry without oxygen. Anal. Biochem. 161(2), 300–306.CrossRefPubMedGoogle Scholar
  49. 49.
    J. R. Lakowicz (1983). Principles of Fluorescence Spectroscopy, Plenum Press, New York.Google Scholar
  50. 50.
    A. P. Savitski, D. B. Papkovskii, and I. V. Berezin (1987). Fluorescent immunoassay. Porphyrins as a new type of label for immunoassay. Dokl. Akad. Nauk. Sssr. 293, 744.PubMedGoogle Scholar
  51. 51.
    A. P. Savitsky, K. N. Solovyov, and D. B. Papkovsky (1990). Time-resolved fluoroimmunoassay—Concepts, realization and prospects. Izv an Sssr Fiz 54(3), 518–523.Google Scholar
  52. 52.
    E. Puklin, B. Carlson, S. Gouin, C. Costin, E. Green, S. Ponomarev, H. Tanji, and M. Gouterman (2000). Ideality of pressure-sensitive paint. I. Platinum tetra(pentafluorophenyl)porphine in fluoroacrylic polymer. J. Appl. Polym. Sci. 77(13), 2795–2804.CrossRefGoogle Scholar
  53. 53.
    S. A. Vinogradov, M. A. Fernandez-Seara, B. W. Dupan, and D. F. Wilson (2002). A method for measuring oxygen distributions in tissue using frequency domain phosphorometry. Comp. Biochem. Phys. A 132(1), 147–152.Google Scholar
  54. 54.
    D. B. Papkovsky, M. A. Smiddy, N. Y. Papkovskaia, and J. P. Kerry (2002). Nondestructive measurement of oxygen in modified atmosphere packaged hams using a phase-fluorimetric sensor system. J. Food Sci. 67(8), 3164–3169.Google Scholar
  55. 55.
    F. C. O’Mahony, T. C. O’Riordan, N. Papkovskaia, V. I. Ogurtsov, J. P. Kerry, and D. B. Papkovsky (2004). Assessment of oxygen levels in convenience-style muscle-based Sous Vide products through optical means and impact on shelf-life stability. Packag. Technol. Sci. 17(4), 225–234.CrossRefGoogle Scholar
  56. 56.
    C. Kolle, W. Gruber, W. Trettnak, K. Biebernik, C. Dolezal, F. Reininger, and P. OLeary (1997). Fast optochemical sensor for continuous monitoring of oxygen in breath-gas analysis. Sens. Actuators B Chem. 38(1–3), 141–149.CrossRefGoogle Scholar
  57. 57.
    T. C. O’Riordan, D. Buckley, V. Ogurtsov, R. O’Connor, and D. B. Papkovsky (2000). A cell viability assay based on monitoring respiration by optical oxygen sensing. Anal. Biochem. 278(2), 221–227.CrossRefPubMedGoogle Scholar
  58. 58.
    T. J. Green, D. F. Wilson, J. M. Vanderkooi, and S. P. DeFeo (1988). Phosphorimeters for analysis of decay profiles and real time monitoring of exponential decay and oxygen concentrations. Anal. Biochem. 174(1), 73–79.CrossRefPubMedGoogle Scholar
  59. 59.
    J. M. Vanderkooi and J. W. Berger (1989). Excited triplet states used to study biological macromolecules at room temperature. Biochim. Biophys. Acta 976(1), 1–27.PubMedGoogle Scholar
  60. 60.
    J. M. Vanderkooi, W. W. Wright, and M. Erecinska (1990). Oxygen gradients in mitochondria examined with delayed luminescence from excited-state triplet probes. Biochemistry 29(22), 5332–5338.CrossRefPubMedGoogle Scholar
  61. 61.
    W. L. Rumsey, J. M. Vanderkooi, and D. F. Wilson (1988). Imaging of phosphorescence: A novel method for measuring oxygen distribution in perfused tissue. Science 241(4873), 1649–1651.PubMedGoogle Scholar
  62. 62.
    D. F. Wilson, S. A. Vinogradov, B. W. Dugan, D. Biruski, L. Waldron, and S. A. Evans (2002). Measurement of tumor oxygenation using new frequency domain phosphorometers. Comp. Biochem. Phys. A 132(1), 153–159.Google Scholar
  63. 63.
    S. A. Vinogradov and D. F. Wilson (1997). Extended porphyrins—New IR phosphors for oxygen measurements. Oxygen Transport Tissue XVIII 411, 597–603.Google Scholar
  64. 64.
    S. A. Vinogradov, M. A. Fernandez-Searra, B. W. Dugan, and D. F. Wilson (2001). Frequency domain instrument for measuring phosphorescence lifetime distributions in heterogeneous samples. Rev. Sci. Instrum. 72(8), 3396–3406.CrossRefGoogle Scholar
  65. 65.
    J. Alderman, J. Hynes, S. M. Floyd, J. Kruger, R. O’Connor, and D. B. Papkovsky (2004). A low-volume platform for cell-respirometric screening based on quenched-luminescence oxygen sensing. Biosens. Bioelectron. 19(11), 1529–1535.CrossRefPubMedGoogle Scholar
  66. 66.
    J. Hynes, C. O’Donovan, F. C. O’Mahony, and D. P. Papkovsky (2004). Biological screening applications using optical oxygen sensing and soluble phosphorescent oxygen probes. In Presented at the Eight World Congress on Biosensors, Granada, Spain.Google Scholar
  67. 67.
    J. Hynes, T. C. O’Riordan, J. Curtin, T. G. Cotter, and D. B. Papkovsky (2005). Fluorescence based oxygen uptake analysis in the study of metabolic responses to apoptosis induction. J. Immunol. Methods, submitted for publication.Google Scholar
  68. 68.
    D. B. Papkovskii, A. P. Savitskii, A. I. Yaropolov, G. V. Ponomarev, V. D. Rumyantseva, and A. F. Mironov (1991). Flow-injection glucose determination with long-wave luminescent oxygen probes. Biomed. Sci. 2, 63–67.PubMedGoogle Scholar
  69. 69.
    D. B. Papkovsky, T. C. O’Riordan, and G. G. Guilbault (1999). An immunosensor based on the glucose oxidase label and optical oxygen detection. Anal. Chem. 71(8), 1568–1573.CrossRefPubMedGoogle Scholar
  70. 70.
    E. Soini and I. Hemmila (1979). Fluoroimmunoassay: Present status and key problems. Clin. Chem. 25(3), 353–361.PubMedGoogle Scholar
  71. 71.
    I. I. Hemmila (1999). LANCEtrade mark: Homogeneous assay platform for HTS. J. Biomol. Screen. 4(6), 303–308.CrossRefPubMedGoogle Scholar
  72. 72.
    H. Bazin, M. Preaudat, E. Trinquet, and G. Mathis (2001). Homogeneous time resolved fluorescence resonance energy transfer using rare earth cryptates as a tool for probing molecular interactions in biology. Spectrochim. Acta A Mol. Biomol. Spectrosc. 57(11), 2197–2211.CrossRefPubMedGoogle Scholar
  73. 73.
    M. V. Demcheva, E. Y. Mantrova, A. Savitsky, O. Behrsing, B. Micheel, and I. Hemmila (1995). Micelle stabilized phosphorescent immunoassay based on bispecific antibodies against label and antigen. Anal. Lett. 28(2), 249–258.Google Scholar
  74. 74.
    E. Y. Mantrova, M. V. Demcheva, and A. P. Savitsky (1994). Universal phosphorescence immunoassay. Anal. Biochem. 219(1), 109–114.CrossRefPubMedGoogle Scholar
  75. 75.
    R. Huttunen, P. Harkonen, J. T. Soini, and A. E. Soini (2004). Application of phosphorescent metalloporphyrin labels in the study of cytokine induced expression of cell surface bound ICAM-1. Anal. Biochem., submitted for publication.Google Scholar
  76. 76.
    T. C. O’Riordan, J. Hynes, D. Yashunski, G. V. Ponomarev, and D. B. Papkovsky (2005). Homogeneous assays for cellular proteases employing the platinum(II)-coproporphyrin label and time-resolved phosphorescence. Anal. Biochem. 342(1), 111–119.CrossRefPubMedGoogle Scholar
  77. 77.
    E. G. Matveeva, E. V. Gribkova, J. R. Sanborn, S. J. Gee, B. D. Hammock, and A. P. Savitsky (2001). Development of a homogeneous phosphorescent immunoassay for the detection of polychlorinated dibenzo-p-dioxins. Anal. Lett. 34(13), 2311–2320.CrossRefGoogle Scholar
  78. 78.
    V. V. Didenko (2001). DNA probes using fluorescence resonance energy transfer (FRET): Designs and applications. Biotechniques 31, 1106–1121.PubMedGoogle Scholar
  79. 79.
    R. R. de Haas, R. P. M. van Gijlswijk, E. B. van der Tol, J. Veuskens, H. E. van Gijssel, R. B. Tijdens, J. Bonnet, N. P. Verwoerd, and H. J. Tanke (1999). Phosphorescent platinum/palladium coproporphyrins for time-resolved luminescence microscopy. J. Histochem. Cytochem. 47(2), 183–196.PubMedGoogle Scholar
  80. 80.
    M. Burke, P. J. O’Sullivan, A. E. Soini, H. Berney, and D. B. Papkovsky (2003). Evaluation of the phosphorescent palladium(II)-coproporphyrin labels in separation-free hybridization assays. Anal. Biochem. 320(2), 273–280.CrossRefPubMedGoogle Scholar
  81. 81.
    E. J. Hennink, R. de Haas, N. P. Verwoerd, and H. J. Tanke (1996). Evaluation of a time-resolved fluorescence microscope using a phosphorescent Pt-porphine model system. Cytometry 24(4), 312–320.CrossRefPubMedGoogle Scholar
  82. 82.
    D. B. Papkovsky, J. Olah, I. V. Troyanovsky, N. A. Sadovsky, V. D. Rumyantseva, A. F. Mironov, A. I. Yaropolov, and A. P. Savitsky (1992). Phosphorescent polymer films for optical oxygen sensors. Biosens. Bioelectron. 7(3), 199–206.CrossRefGoogle Scholar
  83. 83.
    D. B. Papkovsky, G. V. Ponomarev, and O. S. Wolfbeis (1996). Longwave luminescent porphyrin probes. Spectrochim. Acta A 52(12), 1629–1638.Google Scholar
  84. 84.
    B. T. Atwater (1992). Substituent effects of the excited-state properties of platinum meso-tetraphenylporphyrins. J. Fluoresc. 2(4), 237–246.CrossRefGoogle Scholar
  85. 85.
    J. M. Vanderkooi, D. B. Calhoun, and S. W. Englander (1987). On the prevalence of room-temperature protein phosphorescence. Science 236(4801), 568–569.PubMedGoogle Scholar
  86. 86.
    D. F. Wilson, W. L. Rumsey, T. J. Green, and J. M. Vanderkooi (1988). The oxygen dependence of mitochondrial oxidative phosphorylation measured by a new optical method for measuring oxygen concentration. J. Biol. Chem. 263(6), 2712–2718.PubMedGoogle Scholar
  87. 87.
    D. F. Wilson, S. M. Evans, W. T. Jenkins, S. A. Vinogradov, E. Ong, and M. W. Dewhirst (1998). Oxygen distributions within R3230Ac tumors growing in dorsal flap window chambers in rats. Oxygen Transport Tissue XX 454, 603–609.Google Scholar
  88. 88.
    F. C. O’Mahony, C. O’Donovan, J. Hynes, T. Moore, J. Davenport, and D. B. Papkovsky (2005). Optical oxygen microrespirometry as a platform for environmental toxicology and animal model studies. Environ. Sci. Tech. 39, 5010–5014.CrossRefGoogle Scholar
  89. 89.
    A. E. Soini, A. Kuusisto, N. J. Meltola, E. Soini, and L. Seveus (2003). A new technique for multiparameter imaging microscopy: Use of long decay time photoluminescent labels enables multiple color immunocytochemistry with low channel-to-channel crosstalk. Microsc. Res. Tech. 62(5), 396–407.CrossRefPubMedGoogle Scholar
  90. 90.
    A. E. Soini, L. Seveus, N. J. Meltola, D. B. Papkovsky, and E. Soini (2002). Phosphorescent metalloporphyrins as labels in time-resolved luminescence microscopy: Effect of mounting on emission intensity. Microsc. Res. Tech. 58(2), 125–131.CrossRefPubMedGoogle Scholar
  91. 91.
    P. Canty, L. Vare, M. Hakansson, A. M. Spehar, D. Papkovsky, T. Ala-Kleme, J. Kankare, and S. Kulmala (2002). Time-resolved electrochemiluminescence of platinum(II) coproporphyrin. Anal. Chim. Acta 453(2), 269–279.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Biochemistry Department/ABCRFUniversity College CorkCorkIreland
  2. 2.Luxcel Biosciences Ltd.CorkIreland

Personalised recommendations