Journal of Fluorescence

, Volume 15, Issue 4, pp 513–528

Photochemical Characterization of Up-Converting Inorganic Lanthanide Phosphors as Potential Labels

  • Tero Soukka
  • Katri Kuningas
  • Terhi Rantanen
  • Ville Haaslahti
  • Timo Lövgren


We have characterized commercially available up-converting inorganic lanthanide phosphors for their rare earth composition and photoluminescence properties under infrared laser diode excitation. These up-converting phosphors, in contrast to proprietary materials reported earlier, are readily available to be utilized as particulate reporters in various ligand binding assays after grinding to submicron particle size. The laser power density required at 980 nm to generate anti-Stokes photoluminescence from these particulate reporters is significantly lower than required for two-photon excitation. The narrow photoluminescence emission bands at 520–550 nm and at 650–670 nm are at shorter wavelengths and thus totally discriminated from autofluorescence and scattered excitation light even without temporal resolution. Transparent solution of colloidal bead-milled up-converting phosphor nanoparticles provides intense green emission visible to the human eye under illumination by an infrared laser pointer. In this article, we show that the unique photoluminescence properties of the up-converting phosphors and the inexpensive measurement configuration, which is adequate for their sensitive detection, render the up-conversion an attractive alternative to the ultraviolet-excited time-resolved fluorescence of down-converting lanthanide compounds widely employed in biomedical research and diagnostics.


Up-conversion rare earth autofluorescence infrared laser diode immunoassay 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. P. Ekins (1987). An overview of present and future ultrasensitive non-isotopic immunoassay development. Clin. Biochem. Revs. 8, 12–23.Google Scholar
  2. 2.
    R. P. Ekins (1998). Ligand assays: from electrophoresis to miniaturized microarrays. Clin. Chem. 44, 2015–2030.PubMedGoogle Scholar
  3. 3.
    L. J. Kricka (1999). Nucleic acid detection technologies—Labels, strategies, and formats. Clin. Chem. 45, 453–458.PubMedGoogle Scholar
  4. 4.
    E. Soini and I. Hemmilä (1979). Fluoroimmunoassay: Present status and key problems. Clin Chem 25, 353–361.PubMedGoogle Scholar
  5. 5.
    I. Hemmilä (1985). Fluoroimmunoassays and immunofluorometric assays. Clin. Chem. 31, 359–370.PubMedGoogle Scholar
  6. 6.
    R. P. Ekins and S. Dakubu (1985). The development of high sensitivity pulsed light, time-resolved fluoroimmunoassays. Pure Appl. Chem. 57, 437–482.Google Scholar
  7. 7.
    E. D. Sevier, G. S. David, J. Martinis, W. J. Desmond, R. M. Bartholomew, and R. Wang (1981). Monoclonal antibodies in clinical immunology. Clin. Chem. 27, 1797–1806.PubMedGoogle Scholar
  8. 8.
    G. S. David and H. E. Greene (1984) Immunometric assays using monoclonal antibodies US Patent 4,486,530.Google Scholar
  9. 9.
    R. P. Ekins (1989). A shadow over immunoassay. Nature 340, 256–258.CrossRefPubMedGoogle Scholar
  10. 10.
    R. P. Ekins (1978). Quality control and assay design. in Radioimmunoassay and related procedures in medicine, International Atomic Energy Agency, Vienna, pp. 39–56.Google Scholar
  11. 11.
    T. M. Jackson, N. J. Marshall, and R. P. Ekins (1983). Optimisation of immunoradiometric (labelled antibody) assays. In W. M. Hunter and J. E. T. Corrie (Eds.), Immunoassays for Clinical Chemistry, Churchill Livingstone, Edinburgh, pp. 557–575.Google Scholar
  12. 12.
    L. J. Kricka (1994). Selected strategies for improving sensitivity and reliability of immunoassays. Clin. Chem. 40, 347–357.PubMedGoogle Scholar
  13. 13.
    E. Soini and H. Kojola (1983). Time-resolved fluorometer for lanthanide chelates—A new generation of nonisotopic immunoassays. Clin. Chem. 29, 65–68.PubMedGoogle Scholar
  14. 14.
    E. Soini and T. Lövgren (1987). Time-resolved fluorescence of lanthanide probes and applications in biotechnology. CRC Crit. Rev. Anal. Chem. 18, 105–154.Google Scholar
  15. 15.
    S. Dakubu and R. P. Ekins (1985). The fluorometric determination of europium ion concentration as used in time-resolved fluoroimmunoassay. Anal. Biochem. 144, 20–26.CrossRefPubMedGoogle Scholar
  16. 16.
    H. Siitari, I. Hemmilä, E. Soini, T. Lövgren, and V. Koistinen (1983). Detection of hepatitis B surface antigen using time-resolved fluoroimmunoassay. Nature 301, 258–260.CrossRefPubMedGoogle Scholar
  17. 17.
    I. Hemmilä, S. Dakubu, V.-M. Mukkala, H. Siitari, and T. Lövgren (1984). Europium as a label in time-resolved immunofluorometric assays. Anal. Biochem. 137, 335–343.CrossRefPubMedGoogle Scholar
  18. 18.
    B. Alpha, V. Balzani, J.-M. Lehn, S. Perathoner, and N. Sabbatini (1987). Luminescence probes: The Eu3+- and Tb3+-cryptates of polypyridine macrobicyclic ligands. Angew. Chem. Int. Ed. Engl. 26, 1266–1267.CrossRefGoogle Scholar
  19. 19.
    H. Takalo, V. M. Mukkala, H. Mikola, P. Liitti, and I. Hemmilä (1994). Synthesis of europium(III) chelates suitable for labeling of bioactive molecules. Bioconjug. Chem. 5, 278–282.CrossRefPubMedGoogle Scholar
  20. 20.
    P. von Lode, J. Rosenberg, K. Pettersson, and H. Takalo (2003). A europium chelate for quantitative point-of-care immunoassays using direct surface measurement. Anal. Chem. 75, 3193–3201.CrossRefPubMedGoogle Scholar
  21. 21.
    H. Hakala, P. Liitti, K. Puukka, J. Peuralahti, K. Loman, J. Karvinen, P. Ollikka, A. Ylikoski, V.-M. Mukkala, and J. Hovinen (2002). Novel luminescent samarium(III) chelates. Inorg. Chem. Commun. 5, 1059–1062.CrossRefGoogle Scholar
  22. 22.
    J. Karvinen, P. Hurskainen, S. Gopalakrishnan, D. Burns, U. Warrior, and I. Hemmila (2002). Homogeneous time-resolved fluorescence quenching assay (LANCE) for caspase-3. J. Biomol. Screen. 7, 223–231.CrossRefPubMedGoogle Scholar
  23. 23.
    I. Hemmilä, V. M. Mukkala, M. Latva, and P. Kiilholma (1993). Di- and tetracarboxylate derivatives of pyridines, bipyridines and terpyridines as luminogenic reagents for time-resolved fluorometric determination of terbium and dysprosium. J. Biochem. Biophys. Methods 26, 283–290.CrossRefPubMedGoogle Scholar
  24. 24.
    Y.-Y. Xu, K. Pettersson, K. Blomberg, I. Hemmilä, H. Mikola, and T. Lövgren (1992). Simultaneous quadruple-label fluorometric immunoassay of thyroid-stimulating hormone, 17-α-hydroxyprogesterone, immunoreactive trypsin, and creatine kinase MM isoenzyme in dried blood spots. Clin. Chem. 38, 2038–2043.PubMedGoogle Scholar
  25. 25.
    E. P. Diamandis (1991). Multiple labeling and time-resolvable fluorophores. Clin. Chem. 37, 1486–1491.PubMedGoogle Scholar
  26. 26.
    H. Härmä, T. Soukka, and T. Lövgren (2001). Europium nanoparticles and time-resolved fluorescence for ultrasensitive detection of prostate-specific antigen. Clin. Chem. 47, 561–568.PubMedGoogle Scholar
  27. 27.
    G. Mathis (1993). Rare earth cryptates and homogeneous fluoroimmunoassays with human sera. Clin. Chem. 39, 1953–1959.PubMedGoogle Scholar
  28. 28.
    K. Blomberg, P. Hurskainen, and I. Hemmilä (1999). Terbium and rhodamine as labels in a homogeneous time-resolved fluorometric energy transfer assay of the beta subunit of human chorionic gonadotropin in serum. Clin. Chem. 45, 855–861.PubMedGoogle Scholar
  29. 29.
    K. Stenroos, P. Hurskainen, S. Eriksson, I. Hemmilä, K. Blomberg, and C. Lindqvist (1998). Homogeneous time-resolved IL-2-IL-2R alpha assay using fluorescence resonance energy transfer. Cytokine 10, 495–499.CrossRefPubMedGoogle Scholar
  30. 30.
    L. Kokko, K. Sandberg, T. Lövgren, and T. Soukka (2004). Europium(III) chelate-dyed nanoparticles as donors in a homogeneous proximity-based immunoassay for estradiol. Anal. Chim. Acta. 503, 155–162.CrossRefGoogle Scholar
  31. 31.
    H. B. Beverloo, A. van Schadewijk, H. J. M. A. A. Zijlmans, and H. J. Tanke (1992). Immunochemical detection of proteins and nucleic acids on filters using small luminescent inorganic crystals as markers. Anal. Biochem. 203, 326–334.CrossRefPubMedGoogle Scholar
  32. 32.
    K. Kömpe, H. Borchert, J. Storz, A. Lobo, S. Adam, T. Möller, and M. Haase (2003). Green-emitting CePO4:Tb/LaPO4 core-shell nanoparticles with 70% photoluminescence quantum yield. Angew. Chem. Int. Ed. Engl. 42, 5513–5516.CrossRefPubMedGoogle Scholar
  33. 33.
    J. W. Stouwdam, G. A. Hebbink, J. Huskens, and F. C. van Veggel (2004). Lanthanide-doped nanoparticles with excellent luminescent properties in organic media. Chem. Mater. 15, 4604–4616.CrossRefGoogle Scholar
  34. 34.
    R. Bazzi, M. A. Flores, C. Louis, K. Lebbou, W. Zhang, C. Dujardin, S. Roux, B. Mercier, G. Ledoux, E. Bernstein, P. Perriat, and O. Tillement (2004). Synthesis and properties of europium-based phosphors on the nanometer scale: Eu2O3, Gd2O3:Eu, and Y2O3:Eu. J. Colloid Interface Sci. 273, 191–197.CrossRefPubMedGoogle Scholar
  35. 35.
    H. B. Beverloo, A. van Schadewijk, S. van Gelderen-Boele, and H. J. Tanke (1990). Inorganic phosphors as new luminescent labels for immunocytochemistry and time-resolved microscopy. Cytometry 11, 784–792.CrossRefPubMedGoogle Scholar
  36. 36.
    K. Bohmann, W. Hoheisel, B. Köhler, and I. Dorn (2003) Assay basierend auf dotierten nanoteilchen Deutsches Patent- und Markenamt DE 101 53 829 A1.Google Scholar
  37. 37.
    J. Feng, G. Shan, A. Maquieira, M. E. Koivunen, B. Guo, B. D. Hammock, and I. M. Kennedy (2003). Functionalized europium oxide nanoparticles used as a fluorescent label in an immunoassay for atrazine. Anal. Chem. 75, 5282–5286.CrossRefGoogle Scholar
  38. 38.
    M. H. V. Werts, M. A. Duin, J. W. Hofstraat, and J. W. Verhoeven (1999). Bathochromicity of Michler’s ketone upon coordination with lanthanide(III) beta-diketonates enable efficient sensitisation of Eu3+ for luminescence under visible light excitation. Chem. Commun. 1999, 799–800.CrossRefGoogle Scholar
  39. 39.
    W. H. Wright, N. A. Mufti, N. T. Tagg, R. R. Webb, and L. V. Schneider (1997). High-sensitivity immunoassay using a novel upconverting phosphor reporter. Proc. SPIE - Int. Soc. Opt. Eng. 2985, 248–255.Google Scholar
  40. 40.
    H. J. M. A. A. Zijlmans, J. Bonnet, J. Burton, K. Kardos, T. Vail, R. S. Niedbala, and H. J. Tanke (1999). Detection of cell and tissue surface antigens using up-converting phosphors: A new reporter technology. Anal. Biochem. 267, 30–36.CrossRefPubMedGoogle Scholar
  41. 41.
    F. Auzel (2002). Up-conversion in rare-earth-doped systems: past, present and future. Proc. SPIE - Int. Soc. Opt. Eng. 4766, 179–190.Google Scholar
  42. 42.
    J. Lakowicz (1997). Topics in fluorescence spectroscopy, Vol. 5, Nonlinear and two-photon-induced fluorescence, Plenum Press, New York.Google Scholar
  43. 43.
    R. S. Niedbala, H. Feindt, K. Kardos, T. Vail, J. Burton, B. Bielska, S. Li, D. Milunic, P. Bourdelle, and R. Vallejo (2001). Detection of analytes by immunoassay using up-converting phosphor technology. Anal. Biochem. 293, 22–30.CrossRefPubMedGoogle Scholar
  44. 44.
    R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink (1999). Visible quantum cutting in LiGdF4:Eu3+ through downconversion. Science 283, 663–666.PubMedGoogle Scholar
  45. 45.
    H. B. Beverloo, A. van Schadewijk, J. Bonnet, R. van der Geest, R. Runia, N. P. Verwoerd, J. Vrolijk, J. S. Ploem, and H. J. Tanke (1992). Preparation and microscopic visualization of multicolor luminescent immunophosphors. Cytometry 13, 561–570.CrossRefPubMedGoogle Scholar
  46. 46.
    J. Hampl, M. Hall, N. A. Mufti, Y. M. Yao, D. B. MacQueen, W. H. Wright, and D. E. Cooper (2001). Upconverting phosphor reporters in immunochromatographic assays. Anal. Biochem. 288, 176–187.CrossRefPubMedGoogle Scholar
  47. 47.
    F. Song, M. Myers, S. Jiang, Y. Feng, X. B. Chen, and G. Y. Zhang (1999). Effect of erbium concentration on upconversion luminescence of Er:Yb:phosphate glass excited by InGaAs laser diode. Proc. SPIE - Int. Soc. Opt. Eng. 3622, 182–188.Google Scholar
  48. 48.
    J. Karvinen, A. Elomaa, M. L. Makinen, H. Hakala, V. M. Mukkala, J. Peuralahti, P. Hurskainen, J. Hovinen, and I. Hemmila (2004). Caspase multiplexing: Simultaneous homogeneous time-resolved quenching assay (TruPoint) for caspases 1, 3, and 6. Anal. Biochem. 325, 317–325.CrossRefPubMedGoogle Scholar
  49. 49.
    V. K. Bogdanov, D. J. Booth, and W. E. K. Gibbs (2003). Energy transfer processes and the green fluorescence in heavily doped Er3+: Fluoride glasses. J. Non-Cryst. Solids 321, 1–135.CrossRefGoogle Scholar
  50. 50.
    N. M. P. Low and A. L. Major (1971). Effects of preparation on the anti-stokes luminescence of Er-activated rare-earth phosphors. J. Lumin. 4, 357–368.CrossRefGoogle Scholar
  51. 51.
    F. Auzel (2004). Upconversion and anti-Stokes processes in f and d ions in solids. Chem. Rev. 104, 139–173.CrossRefPubMedGoogle Scholar
  52. 52.
    F. van De Rijke, H. Zijlmans, S. Li, T. Vail, A. K. Raap, R. S. Niedbala, and H. J. Tanke (2001). Up-converting phosphor reporters for nucleic acid microarrays. Nat. Biotechnol. 19, 273–276.CrossRefPubMedGoogle Scholar
  53. 53.
    G. Yi, B. Sun, F. Yang, D. Chen, Y. Zhou, and J. Cheng (2002). Synthesis and characterization of high-efficiency nanocrystal up-conversion phosphors: Ytterbium and erbium codoped lanthanum molybdate. Chem. Mater. 14, 2910–2914.CrossRefGoogle Scholar
  54. 54.
    T. Hirai and T. Orikoshi (2004). Preparation of yttrium oxysulfide phosphor nanoparticles with infrared-to-green and -blue upconversion emission using an emulsion liquid membrane system. J. Colloid Interface Sci. 273, 470–477.CrossRefPubMedGoogle Scholar
  55. 55.
    T. Hirai and T. Orikoshi (2004). Preparation of Gd2O3:Yb,Er and Gd2O2S:Yb,Er infrared-to-visible conversion phosphor ultrafine particles using an emulsion liquid membrane system. J. Colloid Interface Sci. 269, 103–108.CrossRefPubMedGoogle Scholar
  56. 56.
    S. Heer, O. Lehmann, M. Haase, and H. U. Güdel (2003). Blue, green, and red upconversion emission from lanthanide-doped LuPO4 and YbPO4 nanocrystals in a transparent colloidal solution. Angew. Chem. Int. Ed. Engl. 42, 3179–3182.CrossRefPubMedGoogle Scholar
  57. 57.
    S. Heer, K. Kömpe, H.-U. Güdel, and M. Haase (2004). Highly efficient multicolour upconversion emission in transparent colloids of nanoparticle-doped NaYF4 nanocrystals. Adv. Mater. 16, 2102–2105.CrossRefGoogle Scholar
  58. 58.
    T. Soukka, H. Härmä, J. Paukkunen, and T. Lövgren (2001). Immunoassays based on multivalent nanoparticle-antibody bioconjugates utilize kinetically enhanced monovalent binding affinity. Anal. Chem. 73, 2254–2260.CrossRefPubMedGoogle Scholar
  59. 59.
    P. L. Corstjens, M. Zuiderwijk, M. Nilsson, H. Feindt, R. Sam Niedbala, and H. J. Tanke (2003). Lateral-flow and up-converting phosphor reporters to detect single-stranded nucleic acids in a sandwich-hybridization assay. Anal. Biochem. 312, 191–200.CrossRefPubMedGoogle Scholar
  60. 60.
    I. Hemmilä and V.-M. Mukkala (2001). Time-resolution in fluorometry technologies, labels, and applications in bioanalytical assays. Crit. Rev. Clin. Lab. Sci. 38, 441–519.CrossRefGoogle Scholar
  61. 61.
    T. Steinkamp and U. Karst (2004). Detection strategies for bioassays based on luminescent lanthanide complexes and signal amplification. Anal. Bioanal. Chem. 380, 24–30.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Tero Soukka
    • 1
  • Katri Kuningas
    • 1
  • Terhi Rantanen
    • 1
  • Ville Haaslahti
    • 1
  • Timo Lövgren
    • 1
  1. 1.Department of BiotechnologyUniversity of TurkuFinland

Personalised recommendations