Journal of Fluorescence

, Volume 15, Issue 4, pp 469–473 | Cite as

Quantitative Analysis of Protein–Protein Interactions by Native Page/Fluorimaging

  • Kylie M. Wagstaff
  • Manisha M. Dias
  • Gualtiero Alvisi
  • David A. Jans
Article

Abstract

We have developed a new quantitative native PAGE mobility shift assay, which allows for the measurement of binding affinities for interacting protein pairs, one of which is fluorescently labelled. We have used it to examine recognition of the Simian virus 40 (SV40) large tumour T-antigen (T-ag) nuclear localisation sequence (NLS) by members of the importin (Imp) superfamily of nuclear transport proteins. We demonstrate that the T-ag NLS binds to the Imp α/β heterodimer in NLS-dependent manner, determining that it binds with eight-fold higher affinity (340 nM), when compared to Imp α alone, consistent with autoinhibition of Imp αwhen not complexed with Imp β. The mobility shift assay is able to detect nM binding affinities, making it a sensitive and useful tool to analyse protein–protein interactions in solution.

Keywords

Protein interactions polyacrylamide gel electrophoresis native PAGE mobility shift assay importins SV40 T-ag nuclear localisation signal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. P. Rihs, D. A. Jans, H. Fan, and R. Peters (1991). The rate of nuclear cytoplasmic protein transport is determined by the casein kinase II site flanking the nuclear localisation sequence of the SV40 T-antigen. EMBO J. 10(3), 633–639.PubMedGoogle Scholar
  2. 2.
    C. Y. Xiao, S. Hubner, and D. A. Jans (1997). SV40 large tumour antigen nuclear import is regulated by the double-stranded DNA-dependent protein kinase site (serine 120) flanking the nuclear localisation sequence. J. Biologic. Chem. 272(35), 22191–22198.CrossRefGoogle Scholar
  3. 3.
    E. Nigg (1997). Nucleocytoplasmic transport: Signals, mechanisms and regulation. Nature 386, 779–787.CrossRefPubMedGoogle Scholar
  4. 4.
    A. Harel and D. J. Forbes (2004). Importin beta: Conducting a much larger cellular symphony. Mol. Cell. 16, 319–330.CrossRefPubMedGoogle Scholar
  5. 5.
    S. Wente (2000). Gatekeepers of the nucleus. Science 288, 1374–1377.CrossRefPubMedGoogle Scholar
  6. 6.
    N. Mosammaparast and L. F. Pemberton (2004). Karyopherins: from nuclear transport mediators to nuclear function regulators. Trends Cell Biol. 14, 547–556.CrossRefPubMedGoogle Scholar
  7. 7.
    J. Moroianu, G. Blobel, and A. Radu (1995). Previously identified protein of uncertain function is karyopherin alpha and together with karyopherin beta docks import substrate at nuclear pore complexes. Proc. Natl. Acad. Sci. U.S.A. 92, 2008–2011.PubMedGoogle Scholar
  8. 8.
    D. A. Jans and S. Hubner (1996). Regulation of protein transport to the nucleus: central role of phosphorylation. Physiologic. Rev. 76(3), 651–685.Google Scholar
  9. 9.
    Y. M. Chook, and G. Blobel (2001). Karyopherins and nuclear import. Curr. Opin. Struct. Biol. 11, 703–715.CrossRefPubMedGoogle Scholar
  10. 10.
    M. S. Moore (2003). Npap60: A new player in nuclear protein import. Trends Cell Biol. 13(2), 61–64.CrossRefPubMedGoogle Scholar
  11. 11.
    I. R. Vetter, C. Nowak, T. Nishimoto, J. Kuhlmann, and A. Wittinghofer (1999). Structure of a Ran-binding domain complexed with Ran bound to a GTP analogue: implications for nuclear transport. Nature 398(6722), 39–46.CrossRefPubMedGoogle Scholar
  12. 12.
    B. Kobe (1999). Autoinhibition by an internal nuclear localisation signal revealed by the crystal structure of mammalian importin alpha. Nat. Struct. Biol. 6(4), 388–397.CrossRefPubMedGoogle Scholar
  13. 13.
    H. P. Rihs and R. Peters (1989). Nuclear transport kinetics depend on phosphorylation-site-containing sequences flanking the karyophilic signal of the simian virus 40 T-antigen. EMBO J. 8(5), 1479–1484.PubMedGoogle Scholar
  14. 14.
    B. Baliga, P. Colussi, S. Read, M. Dias, D. Jans, and S. Kumar (2003). Role of prodomain in importin-mediated nuclear localization and activation of caspase-2. J. Biologic. Chem. 278(7), 4899–4905.CrossRefGoogle Scholar
  15. 15.
    R. Lixin, A. Efthymiadis, B. Henderson, and D. A. Jans (2001). Novel properties of the nuclear targeting signal of human angiogenin. Biochem. Biophys. Res. Commun. 284(1), 185–193.CrossRefPubMedGoogle Scholar
  16. 16.
    S. Hubner, C. Y. Xiao, and D. A. Jans (1997). The protein kinase CK2 site (Ser111/112) enhances recognition of the simian virus 40 large T-antigen nuclear localisation sequence by importins. J. Biologic. Chem. 272(27), 17191–17195.CrossRefGoogle Scholar
  17. 17.
    S. Hubner, H. M. Smith, W. Hu, C. K. Chan, H. P. Rihs, B. M. Paschal, N. V. Raikhel, and D. A. Jans (1999). Plant importin alpha binds nuclear localization sequences with high affinity and can mediate nuclear import independent of importin beta. J. Biologic. Chem. 274(32), 22610–22617.CrossRefGoogle Scholar
  18. 18.
    A. Efthymiadis, H. Shao, S. Hubner, and D. Jans (1997). Kinetic characterization of the human retinoblastoma protein bipartite nuclear localization sequence (NLS) in vivo and in vitro. A comparison with the SV40 large T-antigen NLS. J. Biologic. Chem. 272(35), 22134–22139.CrossRefGoogle Scholar
  19. 19.
    B. Catimel, T. Teh, M. R. Fontes, I. G. Jennings, D. A. Jans, G. J. Howlett, E. C. Nice, and B. Kobe (2001). Biophysical characterization of interactions involving importin-alpha during nuclear import. J. Biologic. Chem. 276(36), 34189–34198.CrossRefGoogle Scholar
  20. 20.
    D. Kalderon, W. D. Richardson, A. F. Markham, and A. E. Smith (1984). Nature 311(5981), 33–38.CrossRefPubMedGoogle Scholar
  21. 21.
    S. H. Park and R. T. Raines (1997). Protein Sci. 6(11), 2344–2349.PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Kylie M. Wagstaff
    • 1
  • Manisha M. Dias
    • 1
  • Gualtiero Alvisi
    • 1
  • David A. Jans
    • 1
    • 2
  1. 1.Department of Biochemistry and Molecular Biology, Nuclear Signalling LaboratoryMonash UniversityClaytonAustralia
  2. 2.ARC Centre of Excellence for Biotechnology and DevelopmentCanberraAustralia

Personalised recommendations