Journal of Fluorescence

, Volume 15, Issue 3, pp 337–362

How to Improve Quality Assurance in Fluorometry: Fluorescence-Inherent Sources of Error and Suited Fluorescence Standards

  • U. Resch-Genger
  • K. Hoffmann
  • W. Nietfeld
  • A. Engel
  • J. Neukammer
  • R. Nitschke
  • B. Ebert
  • R. Macdonald
Article

Abstract

The scope of this paper is to illustrate the need for an improved quality assurance in fluorometry. For this purpose, instrumental sources of error and their influences on the reliability and comparability of fluorescence data are highlighted for frequently used photoluminescence techniques ranging from conventional macro- and microfluorometry over fluorescence microscopy and flow cytometry to microarray technology as well as in vivo fluorescence imaging. Particularly, the need for and requirements on fluorescence standards for the characterization and performance validation of fluorescence instruments, to enhance the comparability of fluorescence data, and to enable quantitative fluorescence analysis are discussed. Special emphasis is dedicated to spectral fluorescence standards and fluorescence intensity standards.

Key Words

Fluorescence standard calibration microarray in vivo imaging flow cytometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. R. Lakowicz (Ed.) (1999). Principles of Fluorescence Spectroscopy, 2nd edn., Kluwer Academic/Plenum Press, New York.Google Scholar
  2. 2.
    J. R. Lakowicz (Ed.) (1992–2004). Topics in Fluorescence Spectroscopy Series, Vols. 1–8, Plenum Press, New York.Google Scholar
  3. 3.
    O. S. Wolfbeis (Series Ed.) (2001–2004). Springer Series on Fluorescence, Methods and Applications, Vols. 1–3, Springer, Berlin.Google Scholar
  4. 4.
    S. G. Schulman (Ed.) (1985–1993). Molecular Luminescence Spectroscopy Parts, Vols. 1–3, Wiley Interscience, New York.Google Scholar
  5. 5.
    W. T. Mason (1999). Fluorescent and Luminescent Probes for Biological Activity, 2nd edn., Academic Press, San Diego.Google Scholar
  6. 6.
    A. J. Pope, U. M. Haupts, and K. J. Moore (1999). Homogenous fluorescence readouts for miniaturized high-throughput screening: Theory and practice. Drug Discov. Today 4(8), 350–362.Google Scholar
  7. 7.
    E. Zubritsky (1999). Microplate readers reach critical mass. Anal. Chem. News Features 71, 39A–43A.Google Scholar
  8. 8.
    C. T. Wittwer, K. M. Ririe, R. V. Andrew, D. A. David, R. A. Gundry, and U. J. Balis (1997). The light cycler: A microvolume multisample fluorimeter with rapid temperature control. Biotechniques 22, 176–181.Google Scholar
  9. 9.
    Supplement (1998). Fluoreszenzspektroskopie. Nachr. Chem. Tech. Lab. 46, S121–S132.Google Scholar
  10. 10.
    Analytical Methods Committee (1998). Evaluation of analytical instrumentation. Part XI Instrumentation for molecular fluorescence spectrometry. Analyst 123, 1649–1656.Google Scholar
  11. 11.
    J. W. Eastman (1966). Standardization of fluorescence spectra and the calibration of spectrofluorimeters. Appl. Optics 5(7), 1125–1132.Google Scholar
  12. 12.
    W. Galbraith, K. W. Ryan, N. Gliksman, D. L. Taylor, and A. S. Waggoner (1989). Multiple spectral parameter imaging in quantitative fluorescence microscopy. I: Quantitation of bead standards. Comput. Med. Imag. Graph. 13, 47–60.Google Scholar
  13. 13.
    A. K. Gaigalas, L. Li, O. Henderson, R. Vogt, J. Barr, G. Marti, J. Weaver, and A. Schwartz (2001). The development of fluorescence intensity standards. J. Res. Natl. Inst. Stand. Technol. 106(2), 381–389.Google Scholar
  14. 14.
    C. A. Parker (1968). Photoluminescence of Solutions, Elsevier, Amsterdam.Google Scholar
  15. 15.
    J. N. Miller (1981). Standards in Fluorescence Spectrometry, Ultraviolett Spectrometry Group, London.Google Scholar
  16. 16.
    D. F. Eaton (1988). Reference materials for fluorescence measurement. Pure Appl. Chem. 60, 1107–1114.Google Scholar
  17. 17.
    R. A. Velapoldi and M. S. Epstein (1989). In M. C. Goldberg (Ed.), Luminescence Applications in Biological, Chemical, Environmental and Hydrological Sciences, ACS Symposium Series, Vol. 383, American Chemical Society, Washington, DC, pp. 98– 126.Google Scholar
  18. 18.
    W. D. Niles and F. S. Cohen (1995). Radiometric calibration of a video fluorescence microscope for the quantitative imaging of resonance energy transfer. Rev. Sci. Instrum. 66, 3527– 3536.Google Scholar
  19. 19.
    EN ISO/IEC 17025; GLP/GMP, GLP: Good laboratory praxis; GMP: Good manufacturing praxis.Google Scholar
  20. 20.
    Burgess and D. G. Jones (1995). Spectrophotometry, Luminescence and Colour: Science and Compliance, Elsevier, Amsterdam.Google Scholar
  21. 21.
    O. D. D. Soares and J. L. C. Costa (1999). Spectrophotometers intercomparison for spectrocolorimetric scale harmonization. Rev. Sci. Instrum. 70(12), 4471–4481.Google Scholar
  22. 22.
    J. C. Travis, J. C. Zwinkels, F. Mercader, A. Ruiz, E. A. Early, M. V. Smith, M. Noel, M. Maley, G. W. Kramer, K. L. Eckerle, and D. L. Duewer (2002). An international evaluation of holmium oxide solution reference materials for wavelength calibration in molecular absorption spectrophotometry. Anal. Chem. 74, 3408–3415.Google Scholar
  23. 23.
    ASTM E 169-87 (reapproved 2003). Standard Practices for general Techniques of Ultraviolet-Visible Quantitative Analysis, and herein referenced ASTM standards.Google Scholar
  24. 24.
    CIE-Publ. 15.2, Colorimetry, 2nd edn., 1986.Google Scholar
  25. 25.
    K. D. Mielenz (1987). In C. Burgess and K. D. Mielenz (Eds.), Advances in Standards and Methodology in Spectrophotometry, Elsevier, Amsterdam, pp. 49–62.Google Scholar
  26. 26.
    D. C. Rich and D. Martin (1999). Improved model for improving the inter-instrument agreement of spectrocolorimeters. Anal. Chim. Acta 380, 263–276.Google Scholar
  27. 27.
    K. Witt (2002/2003). Haben wir die UV/vis-Spektrometerie lumineszierender Materialien im Griff? Die Farbe 46(1/2), 31–51.Google Scholar
  28. 28.
    ASTM E 388-72 (reapproved 2003). Spectral bandwidth and wavelength accuracy of fluorescence spectrometers.Google Scholar
  29. 29.
    ASTM E 578-83 (reapproved 2003). Linearity of fluorescence measuring system.Google Scholar
  30. 30.
    ASTM E 579-84 (reapproved 2003). Limit of detection of fluorescence of quinine sulfate.Google Scholar
  31. 31.
    A. Schwartz and E. Fernandez-Repollet (1993). Development of clinical standards for flow cytometry. Ann. N. Y. Acad. Sci. 677, 28–39.Google Scholar
  32. 32.
    A. Schwartz, M. Mendez, G. Santiago, L. Diaz, and E. Fernandez-Repollet (1997). Applications of common quantitative fluorescent standards to multiple platforms: Comparison of commercial fluorescent calibration standards used in quantitative flow cytometry. Clin. Immunol. 17(1), 14–18.Google Scholar
  33. 33.
    A. Schwartz, G. E. Marti, J. W. Gratama, and E. Fernandez-Repollet (1998). Standardizing flow cytometry: A classification system of fluorescence standards used for flow cytometry. Cytometry 33, 106–114.Google Scholar
  34. 34.
    J. W. Gratama, J. L. D’Hautcourt, F. Mandy, G. Rothe, D. Barnett, G. Janossy, S. Papa, G. Schmitz, and R. Lenkei (1998). Flow cytometric quantitation of immunofluorescence intensity: Problems and perspectives. Cytometry 33, 166–178.Google Scholar
  35. 35.
    R. A. Velapoldi (1987). Liquid standards in fluorescence spectrometry. In C. Burgess and K. D. Mielenz (Eds.), Advances in Standards and Methodology in Spectrophotometry, Elsevier, Amsterdam, pp. 175–193.Google Scholar
  36. 36.
    I. Billard, E. Ansoborlo, K. Afferson, S. Arpigny, M. E. Azenha, D. Brich, P. Bros, H. D. Burrows, G. Choppin, L. Couston, V. Dubois, T. Fangh¨nel, G. Geipel, S. Hubert, J. I. Kim, T. Kimura, R. Klenze, A. Kronenberg, M. Kumke, G. Lagarde, G. Llamarque, S. Lis, C. Madic, G. Meinrath, C. Moulin, R. Nagaishi, D. Parker, G. Plancque, F. Scherbaum, E. Simoni, S. Sinkov, and C. Viallesoubranne (2003). Appl. Spectrsc. 57(8), 1027–1038.Google Scholar
  37. 37.
    For clear definition of the metrological hierarchy of reference materials, see International Vocabulary of Basics and General Terms in Metrology (1994), 2nd edn., Beuth Verlag GmbH.Google Scholar
  38. 38.
    R. A. Velapoldi and K. D. Mielenz (1980). A fluorescence standard reference material: Quinine sulfate dihydrate, NBS Spec. Publ. 260264, PB 80132046, Springfield, VA.Google Scholar
  39. 39.
    A. Schwartz, L. Wang, E. Early, A. Gaigalas, Y.-Z. Zhang, G. E. Marti, and R. F. Vogt (2002). Quantitating fluorescence intensity from fluorophore: The definition of MESF assignment. J. Res. Natl. Inst. Stand. Technol. 107(1), 83–91.Google Scholar
  40. 40.
    U. Resch-Genger, D. Pfeifer, C. Monte, W. Pilz, A. Hoffmann, M. Spieles, J. Hollandt, R. D. Taubert, B. Sch¨nenberger, P. Nording (in press), Traceability of fluorometry. Part II: Spectral fluorescence standards. J. Fluoresc. 15(3), 325.Google Scholar
  41. 41.
    J. W. Verhoeven (1996). Molecular terms used in photochemistry (recommendations 1996). Pure Appl. Chem. 68(12), 2223–2286.Google Scholar
  42. 42.
    J. Hollandt, R. D. Taubert, J. Seidel, A. Gugg-Helminger, U. Resch-Genger, D. Pfeifer, C. Monte, and W. Pilz (in press), Traceability of fluorometry. Part I: Physical standards. J. Fluoresc. 15(3), 311.Google Scholar
  43. 43.
    E. D. Cehelnik, K. D. Mielenz, and R. A. Velapoldi (1975). Polarization effects on fluorescence measurements. J. Res. Natl. Bur. Stand. A 79A(1), 1–15.Google Scholar
  44. 44.
    U. Resch-Genger, K. Hoffmann, and A. Engel, manuscript in preparation.Google Scholar
  45. 45.
    T. Erdogan, A. Pradhan, and V. Mizrahi (2003). Optical filters impact fluorescence fidelity. Biophotonics Int. 10(10), 38–43.Google Scholar
  46. 46.
    J.W. Hofstraat and M. J. Latuhihin (1994). Correction of fluorescence spectra. Appl. Spectrosc. 48(4), 436–446.Google Scholar
  47. 47.
    J. A. Gardecki and M. Maroncelli (1998). Set of secondary emission standards for calibration of the spectral responsivity in emission spectroscopy. Appl. Spectrosc. 52(9), 1179–1189.Google Scholar
  48. 48.
    R. J. Kovach and W. M. Peterson (1994). The measurement of sensitivity in fluorescence spectroscopy. Am. Lab. 32G–32K.Google Scholar
  49. 49.
    R. B. Thompson, I. Gryczynski, and J. Malicka (2002). Fluorescence polarization standards for high-throughput screening and imaging. Biotechniques 32(1), 34–41.Google Scholar
  50. 50.
    See for instance Molecular Probes, Starna GmbH, Matech Precision Dynamics Coorp., Labsphere Inc., Fluka GmbH, LambdaChem GmbH, and SUMITA Optical Glass Inc. as well as NIST (RM 8640, SRM 936a, and 1932).Google Scholar
  51. 51.
    R. F. Chen (1972). Measurement of absolute values in biochemical fluorescence spectroscopy. J. Res. Nat. Bur. Stand. A 76(6), 593–606.Google Scholar
  52. 52.
    R. B. Thompson, I. Gryczynski, and J. Malicka (2002). Fluorescence polarization standards for high-throughput screening and imaging. Biotechniques 32(1), 34–41.Google Scholar
  53. 53.
    I. T. Lifshotz and M. L. Meilman (1989). Standard sample for calibrating wavelength scales of spectral fluorimeters. Sov. J. Opt. Technol. 55(8), 487–489.Google Scholar
  54. 54.
    S. A. Wise, L. C. Sander, and W. E. May (1993). Determination of polycyclic aromatic hydrocarbons by liquid chromatography. J. Chromatogr. 642, 329–349.Google Scholar
  55. 55.
    SRM 1647b, NIST.Google Scholar
  56. 56.
    A. Schwartz, A. K. Gaigalas, L. Wang, G. E. Marti, R. F. Vogt, and E. Fernandez-Repollet (2004). Formalization of the MESF unit of fluorescence intensity. Cytometry 57B(1), 1–6.Google Scholar
  57. 57.
    RM 8640, NIST.Google Scholar
  58. 58.
    P. Froehlich (1989). Under the sensitivity specification for a fluorescence spectrophotometer. Int. Lab. 42–44.Google Scholar
  59. 59.
    R. J. Kovach and W. M. Peterson (1994). The measurement of mensitivity in fluorescence spectroscopy. Am. Lab. 32G–32K.Google Scholar
  60. 60.
    ISO (1993). Guide to the expression of uncertainty in measurement.Google Scholar
  61. 61.
    J. N. Demas (1982). In K. D. Mielenz (Ed.), Optical Radiation Measurements, Vol. 3, Academic Press, New York, p. 195.Google Scholar
  62. 62.
    W. Geffken (1962). The molar absorption of different ions in glasses. Glastechn. Berichte 35, 27–35.Google Scholar
  63. 63.
    M. Mizuguchi, H. Hosono, and H. Kawazone (1999). Time-resolved photoluminescence for diagnostic of photoluminescence to ArF excimer laser damage to CaF2 single crystals. J. Opt. Soc. Am. 7(16), 1153–1159.Google Scholar
  64. 64.
    P. de Rose (2003). Bioanalytical and biomedical applications of fluorescence techniques: Instrument characterization and validation, traceability, and need for reference materials, in Fluorescence Workshop, BERM-9, Berlin.Google Scholar
  65. 65.
    D. Ehrt, P. Ebeling, U. Natura, U. Kohlberg, K. Naumann, and S. Ritter (2001). Redox equilibria and ultraviolet radiation induced defects in glasses. Int. Cong. Glass 1, 84–96.Google Scholar
  66. 66.
    J. W. Chan, T. Huster, J. S. Hayden, S. H. Risbud, and D. M. Krol (2002). J. Am. Ceram. Soc. 85(5), 1037–1040.Google Scholar
  67. 67.
    A. Engel, K. Knapp, B. Speit, G. Wehrhan, and E. M¨rsen (2001). High quality CaF2 used for 157 nm micro lithography. Fab. Tech. 14, 177–184.Google Scholar
  68. 68.
    C. M¨hlig, W. Triebel, G. T¨pfer, and A. Jordanov (2003). CaF2 for ArF lithography—Characterisation by in-situ and LIF measurements, CHOCLAB II final report—Optics Characterization, pp. 257–267.Google Scholar
  69. 69.
    A. Engel, W. Triebel, C. M¨hlig, J. Alkemper, A. Kr¨mer, J. Kandler, K. Knapp, and E. M¨rsen (2000). Visualization of laser damage in 157 nm material CaF2 and BaF2, 1st 157 nm Symposium, Dana Point CA, pp. 391–398.Google Scholar
  70. 70.
    A. Engel, R. Haspel, and V. Rupertus (2003). Advanced industrial fluorescence metrology used for qualification of high-quality optical materials. SPIE Proc. 51185120, 182–189.Google Scholar
  71. 71.
    R. A. Velapoldi (1971). Fluorescence. Nat. Bur. Stand. Tech. Note 584, 53–83.Google Scholar
  72. 72.
    H. Pick (1972). Structure of trapped electron and trapped hole centers in alkali halides. In J. Abeles (Ed.), Optical Properties of Solids, North Holland, pp. 653–668.Google Scholar
  73. 73.
    D. W. Pack, W. J. Manthey, and D. S. Mc Clure (1989). Production of color centers with ionizing irradiation in alkali halides. Phys. Rev. B 40(14), 9930–9935.Google Scholar
  74. 74.
    M. Letz, A. Engel, L. Parthier, U. Natura, and K. Knapp (2004). CaF2 for DUV lens fabrication: Basic material properties and dynamic light-matter interaction. SPIE Proc. 5377, Optical Microlithography XVII, 1797–1804.Google Scholar
  75. 75.
    Japanese Optical Glass Industrial Standards, JOGIS, 03-1975.Google Scholar
  76. 76.
    W. Gellermann (1989). J. Chem. Solids 52, 249–254.Google Scholar
  77. 77.
    W. Goehde, U. Cassens, L. G. Lehman, Y. Traore, W. Goehde jun., P. Berkes, C. Westerberg, and B. Greve (2003). Individual patient-dependent influence of erythrocyte lysing procedures on flow-cytometric analysis of leukocyte subpopulations. Transfusion Med. Hemother. 30, 165–170.Google Scholar
  78. 78.
    J.-C. Strohmeyer, C. Blume, C. Meisel, W.-D. Doecke, M. Hummel, C. Hoeflich, K. Thiele, A. Unbehaun, R. Hetzer, and H.-D. Volk (2003). Standardized immune monitoring for the prediction on infections after cardiopulmonary bypass surgery in risk patients. Cytometry 53B, 54–62.Google Scholar
  79. 79.
    G. Monneret, N. Elmenkouri, J. Bohe, A. L. Debard, A. C. Gutowski, J. Bienvenu, and A. Lepape (2002). Analytical requirements for measuring monocytic human lymphocyte antigen DR by flow cytometry: Application to the monitoring of patients with septic shock. Clin. Chem. 48, 1589–1592.Google Scholar
  80. 80.
    S. B. Iyer, M. J. E. Bishop, B. Abrams, V. C. Maino, A. J. Ward, T. P. Christion, and K. A. Davis, QuantiBRITE™: A new standard for fluorescence quantification, http://www.bdbiosciences.com/immunocytometry_systems (see download literature, White Papers, QuantiBRITE™ White Paper).
  81. 81.
    Y. Gerena-López, J. Nolan, L. Wang, A. Gaigalas, A. Schwartz, and E. Fernández-Repollet (2004). Quantification of EGFP expression on Molt-4 T cells using calibration standards. Cytometry 60A, 21–28.Google Scholar
  82. 82.
    J. B. Pawley (Ed.) (1995). Handbook of Biological Confocal Microscopy, 2nd edn., Kluwer Academic Publishers, New York.Google Scholar
  83. 83.
    S. Inoue (Ed.) (1986). Video Microscopy, Plenum Publishers, New York.Google Scholar
  84. 84.
    D. B. Murphy (Ed.) (2001). Fundamentals of Light Microscopy and Electronic Imaging, Wiley-Liss, New York.Google Scholar
  85. 85.
    X. F. Wang, A. Periasamy, B. Herman, and D. M. Coleman (1992). Fluorescence lifetime imaging microscopy (FLIM): Instrumentation and applications. Crit. Rev. Anal. Chem. 23(5), 369– 395.Google Scholar
  86. 86.
    Special issue on the use of ion-sensitive fluorophores for making accurate intracellular ion measurements at high spatial and/or temporal resolution (1990). Cell Calcium, February/March.Google Scholar
  87. 87.
    M. Andreeff and D. Pinkel (Ed.) (1999). Introduction to Fluorescence in Situ Hybridization: Principals and Clinical Applications, Wiley-Liss, New York.Google Scholar
  88. 88.
    V. E. Centonze, A. Takahashi, E. Casanova, and B. Herman (2000). Quantitative fluorescence microscopy. J. Histotechnol. 23(3), 229–234.Google Scholar
  89. 89.
    W. D. Niles and F. C. Cohen (1995). Radiometric calibration of a video fluorescence microscope for quantitative imaging of resonance energy transfer. Rev. Sci. Instrum. 66(6), 3527–3536.Google Scholar
  90. 90.
    R. Nitschke (2004). Standardization and quantification in microscopy, Workshop AK PhotonicNet, Wetzlar.Google Scholar
  91. 91.
    The point-spread function is determined by the product of the excitation intensity distribution and the light collection efficiency function.Google Scholar
  92. 92.
    J. S. Ploem (1970). Standards for fluorescence microscopy, in E. J. Holborow (Ed.), Standard for Immunofluorescence Symposium, Blackwell Scientific Publications, Oxford, pp. 137–153.Google Scholar
  93. 93.
    W. Galbraith, K. W. Ryan, N. Gliksman, D. Lansing Taylor, and A. S. Waggoner (1989). Multiple spectral parameter imaging in quantitative fluorescence microscopy. I: Quantitation of bead standards. Comp. Med. Imag. Graphics 13(1), 47–60.Google Scholar
  94. 94.
    J. M. Lerner and R. M. Zucker (2004). Calibration and validation of confocal spectral imaging systems. Cytometry 62A, 8–34.Google Scholar
  95. 95.
    M. Sernetz and A. Thaer (1970). A capillary fluorescence standard for microfluorometry. J. Microscopy 91(1), 43–52.Google Scholar
  96. 96.
    F. W. D. Rost (1991). Quantitative Fluorescence Microscopy, Cambridge University Press, Cambridge, p. 236.Google Scholar
  97. 97.
    D. S. Kaplan and G. L. Picciolo (1989). Characterization of instrumentation and calibrators for quantitative microfluorometry for immunofluorescence tests. J. Clin. Microbiol. 27, 442–447.Google Scholar
  98. 98.
    A. P. M. Jongsma, W. Hijmans, and J. S. Ploem (1971). Quantitative immunofluorescence. Histochemie 25, 329–343.Google Scholar
  99. 99.
    R. A. Velapoldi, J. C. Travis, W. A. Cassatt, and W. T. Yap (1975). Inorganic ion-doped glass fibres as microspectrofluorimetric standards. J. Microsc. 103(3), 293–303.Google Scholar
  100. 100.
    R. P. Haugland (Ed.) (2002). Handbook of Fluorescent Probes and Research Products, 9th edn., Molecular Probes, Section 24.1.Google Scholar
  101. 101.
    J. J. Haaijman and J. P. R. van Dalen (1974). Quantification in immunofluorescence microscopy: A new standard for fluorescein and rhodamine emission measurement. J. Immunol. Methods 5, 359–374.Google Scholar
  102. 102.
    S. J. Lockett, K. Jacobson, and B. Herman (1992). Quantitative precision of an automated fluorescence-based image cytometer. Anal. Quant. Cytol. Histol. 14, 187–202.Google Scholar
  103. 103.
    M. A. Model and J. K. Burkhardt (2001). A standard for calibration and shading correction of a fluorescence microscope. Cytometry 44, 309–316.Google Scholar
  104. 104.
    J. E. Sisken (1989). Fluorescent standards. Methods Cell Biol. 30, 113–126.Google Scholar
  105. 105.
    S. G. Turney, S. M. Culican, and J. W. Lichtman (1996). A quantitative fluorescence-imaging technique for studying acetylcholine receptor turnover at neuromuscular junctions in living animals. J. Neurosci. Methods 64, 199–208.Google Scholar
  106. 106.
    P. W. Stevens and D. M. Kelso (2003). Imaging and analysis of immobilized particle arrays. Anal. Chem. 75, 1147–1154.Google Scholar
  107. 107.
    A. C. Jones, M. Millington, J. Muhl, J. M. De Freitas, J. S. Barton, and G. Gregory (2001). Calibration of an optical fluorescence method for film thickness measurement. Meas. Sci. Technol. 12, N23–N27.Google Scholar
  108. 108.
    Evident Technologies, Product Catalogue, February 2004.Google Scholar
  109. 109.
    A. P. Alivisatos (1996). Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 934–937.Google Scholar
  110. 110.
    A. Knight, J. Gaunt, T. Davidson, V. Chechik, and S. Windsor (2004). Evaluation of the suitability of quantum dots as fluorescence standards. NPL report DQL-AS 007.Google Scholar
  111. 111.
    W. G. J. H. M. van Sark, P. L. T. M. Frederix, D. J. van den Heuvel, H. C. Gerritsen, A. A. Bol, J. N. J. van Lingen, C. de Mello Donega, and A. Meijerink (2001). Photoxidation and photobleaching of single CdSe/ZnS quantum dots probed by room-temperature time resolved spectroscopy. J. Phys. Chem. B 105(10), 8281– 8284.Google Scholar
  112. 112.
    I. T. Young (1983). The use of digital image processing techniques for the calibration of quantitative microscopes. Proc. SPIE 387, 326–335.Google Scholar
  113. 113.
    APE GmbH, Berlin; http://www.ape-berlin.de.
  114. 114.
    M. C. Pirrung (2002). How to make a DNA chip. Angew. Chem. Int. Ed. 41(8), 1276–1289.Google Scholar
  115. 115.
    J. R. Epstein, I. Biran, and D. R. Walt (2002). Fluorescence-based nucleic acid detection and microarrays. Anal. Chim. Acta 469, 3–36.Google Scholar
  116. 116.
    B. Lemieux, A. Asharoni, and M. Schena (1998). Overview of DNA chip technology. Mol. Breed. 4, 277–289.Google Scholar
  117. 117.
    P. Hedge, R. Qi, K. Abernathy, C. Gay, S. Dharap, R. Gaspard, J. E. Hughes, E. Snesrud, N. Lee, and J. Quackenbush (2000). A concise guide to cDNA microarray analysis. Biotechniques 29(3), 548–562.Google Scholar
  118. 118.
    C. B. V. Christensen (2002). Arrays in biological and chemical analysis. Talanta 56, 289–299.Google Scholar
  119. 119.
    Biochips (Market survey) (2003). New Drugs 26–29.Google Scholar
  120. 120.
    M. Schena, D. Shalon, R. W. Davis, and P. O. Brown (1995). Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270(5235), 467–470.Google Scholar
  121. 121.
    M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein (1998). Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. U.S.A. 95(25), 14863–14868.Google Scholar
  122. 122.
    S. Granjeaud, F. Bertucci, and B. R. Jordan (1999). Expression profiling: DNA arrays in many guises. Bioassays 21(9), 781–790.Google Scholar
  123. 123.
    M. B. Eisen and P. O. Brown (1999). DNA arrays for analysis of gene expression. Meth. Enzymol. 303, 179–205.Google Scholar
  124. 124.
    A. Butte (2002). The use and analysis of microarray data. Nat. Rev. Drug Discov. 1, 951–960Google Scholar
  125. 125.
    M. Taniguchi, K. Miura, H. Iwao, and S. Yamanaka (2001). Quantitative assessment of DNA microarrays—Comparison with Northern Blot analyses. Genomics 71, 34–39.Google Scholar
  126. 126.
    M. Bartosiewicz, M. Trounstine, D. Barker, R. Jonston, and A. Buckpitt (2000). Development of a toxicological gene array and quantitative assessment of this technology. Arch. Biochem. Biophys. 376(1), 66–73.Google Scholar
  127. 127.
    E. A. Winzeler, M. Schena, and R. W. Davis (1999). Fluorescence-based expression monitoring using microarrays. Meth. Enzymol. 306, 3–18.Google Scholar
  128. 128.
    Z. Guo, R. A. Guilfoyle, A. J. Thiel, R. Wang, and L. M. Smith (1994). Direct fluorescence analysis of genetic polymorphism by hybridization with oligonucleotide arrays an glass supports. Nucleic Acids Res. 22(24), 5456–5465.Google Scholar
  129. 129.
    J. B. Randolph and A. S. Waggoner (1997). Stability, specifity and fluorescence brightness of multiply-labeled fluorescent DNA probes. Nucleic Acids Res. 25(14), 2923–2929.Google Scholar
  130. 130.
    F. Perraut, A. Lagrange, P. Pouteau, O. Peyssonneaux, P. Puget, G. McGall, L. Menou, R. Gonzalez, P. Labeye, and F. Ginot (2002). A new generation of scanners for DNA chips. Biosens. Bioelectron. 17, 803–813.Google Scholar
  131. 131.
    K. Adelheim, E. Emantraut, T. Kaiser, and J. Tuchscheerer (2002). Smart chip for array experiment standardization. New Drugs 22–23.Google Scholar
  132. 132.
    A. M. Dudley, J. Aach, M. A. Steffen, and G. M. Church (2002). Measuring absolute expression with microarrays with a calibrated reference sample and an extended signal intensity range. Proc. Natl. Acad. Sci. U.S.A. 99(11), 7554–7559.Google Scholar
  133. 133.
    M. R. Weil, T. Macatee, and H. R. Garner (2002). Toward a universal standard: Comparing two methods for standardizing spotted microarray data. Biotechniques 32(6), 1310–1314.Google Scholar
  134. 134.
    M. Cronin, K. Ghosh, F. Sistare, J. Quackenbush, V. Vilker, and C. O’Connell (2004). Universal RNA Reference Materials for Gene Expression. Clin. Chem. [meeting review].Google Scholar
  135. 135.
    Y. F. Leung and D. Cavalieri (2003). Fundamentals of cDNA microarray data analysis. Trends Genet. 19(11), 649–659.Google Scholar
  136. 136.
    T. Forster, D. Roy, and P. Ghazal (2003). Experiments using microarray technology: Limitations and standard operating procedures. J. Endocrinol. 178(2), 195–204.Google Scholar
  137. 137.
    Tumor Analysis Best Practices Working Group (2004). Expression profiling—Best practices for data generation and interpretation in clinical trials. Nat. Rev. Genet. 5(3), 229–237.Google Scholar
  138. 138.
    A. T. Weeraratna, J. E. Nagel, V. d. V. Mello-Coelho, and D. D. Taub (2004). Gene expression profiling: from microarrays to medicine. J. Clin. Immunol. 24(3), 213–224.Google Scholar
  139. 139.
    A. Brazma, P. Hingamp, J. Quackenbush, G. Sherlock, P. Spellman, C. Stoeckert, J. Aach, W. Ansorge, C. A. Ball, H. C. Causton, T. Gaasterland, P. Glenisson, F. C. Holstege, I. F. Kim, V. Markowitz, J. C. Matese, H. Parkinson, A. Robinson, U. Sarkans, S. Schulze-Kremer, J. Stewart, R. Taylor, and J. Vilo (2001). Vingron M. Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat. Genet. 29(4), 365–371.Google Scholar
  140. 140.
    P. T. Spellman, M. Miller, J. Stewart, C. Troup, U. Sarkans, S. Chervitz, D. Bernhart, G. Sherlock, C. Ball, M. Lepage, M. Swiatek, W. L. Marks, J. Goncalves, S. Markel, D. Iordan, M. Shojatalab, A. Pizarro, J. White, R. Hubley, E. Deutsch, M. Senger, B. J. Aronow, A. Robinson, D. Bassett, C. J. Jr. Stoeckert, and A. Brazma (2002). Design and implementation of microarray gene expression markup language (MAGE-ML). Genome Biol. 3(9), RESEARCH0046.Google Scholar
  141. 141.
    A. Brazma, H. Parkinson, U. Sarkans, M. Shojatalab, J. Vilo, N. Abeygunawardena, E. Holloway, M. Kapushesky, P. Kemmeren, G. G. Lara, A. Oezcimen, P. Rocca-Serra, and S. A. Sansone (2003). ArrayExpress—A public repository for microarray gene expression data at the EBI. Nucleic Acids Res. 31(1), 68–71.Google Scholar
  142. 142.
    J. Gollub, C. A. Ball, G. Binkley, J. Demeter, D. B. Finkelstein, J. M. Hebert, T. Hernandez-Boussard, H. Jin, M. Kaloper, J. C. Matese, M. Schroeder, P. O. Brown, D. Botstein, and G. Sherlock (2003). The Stanford Microarray Database: Data access and quality assessment tools. Nucleic Acids Res. 31(1), 94–96.Google Scholar
  143. 143.
    See for example, Clondiag Chip Technologies GmbH; Full Moon Biosystems Inc.Google Scholar
  144. 144.
    G. A. Wagnières, W. M. Star, and B. C. Wilson (1998). In vivo fluorescence spectroscopy and imaging for oncological applications. Photochem. Photobiol. 68, 603–632.Google Scholar
  145. 145.
    R. Richards-Kortum and E. M. Sevick-Muraca (1996). Quantitative optical spectroscopy for tissue diagnosis. Annu. Rev. Phys. Chem. 47, 555–606.Google Scholar
  146. 146.
    D. J. Cruccia, F. Bevilacqua, A. J. Durkin, S. Merritt, B. J. Tromberg, G. Gulsen, H. Yu, J. Wang, and O. Nalcioglu (2003). In vivo quantification of optical contrast agent dynamics in rat tumors by use of diffuse optical spectroscopy with magnetic resonance imaging coregistration. Appl. Opt. 42, 2940–2950.Google Scholar
  147. 147.
    D. Y. Paithankar, A. U. Chen, B. W. Pogue, M. S. Patterson, and E. M. Sevick-Muraca (1997). Imaging of fluorescent yield and lifetime from multiply scattered light reemitted from random media. Appl. Opt. 36, 2260–2272.Google Scholar
  148. 148.
    R. Weissleder and U. Mahmood (2001). Mol. Imag. Radiol. 219, 316–333.Google Scholar
  149. 149.
    V. Ntziachristos, J. Ripoll, and R. Weissleder (2002). Would near-infrared fluorescence signals propagate through large human organs for clinical studies? Opt. Lett. 27, 333–335.Google Scholar
  150. 150.
    R. Weissleder and V. Ntziachristos (2003). Shedding light onto live molecular targets. Nat. Med. 9, 123–128.Google Scholar
  151. 151.
    M. Rudin and R. Weissleder (2003). Molecular imaging in drug discovery and development. Nat. Rev. Drug Discov. 2, 123– 131.Google Scholar
  152. 152.
    V. Ntziachhristos, C. Bremer, and R. Weissleder (2003). Fluorescence imaging with near-infrared light: New technological advances that enable in vivo molecular imaging. Eur. Radiol. 13, 195–208.Google Scholar
  153. 153.
    A. Becker, C. Hessenius, K. Licha, B. Ebert, U. Sukowski, W. Semmler, B. Wiedenmann, and C. Gr¨tzinger (2001). Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands. Nat. Biotechnol. 19, 327–331.Google Scholar
  154. 154.
    E. E. Graves, J. P. Culver, J. Ripoll, R. Weissleder, and V. Ntziachristos (2004). Singular-value analysis and optimization of experimental parameters in fluorescence molecular tomography. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 21, 231–241.Google Scholar
  155. 155.
    U. Sukowski, F. Schubert, D. Grosenick, and H. Rinneberg (1996). Preparation of solid phantoms with defined scattering and absorption properties for optical tomography. Phys. Med. Biol. 41, 1823–1844.Google Scholar
  156. 156.
    K. Licha (2002). Contrast agents for optical imaging. Topics Curr. Chem. 222, 22–29.Google Scholar
  157. 157.
    M.-A. E. J. Ortner, B. Ebert, E. Hein, K. Zumbusch, D. Nolte, U. Sukowski, J. Weber-Eibel, B. Fleige, M. Dietel, M. Stolte, G. Oberhuber, R. Porschen, B. Klump, H. H¨rtnagel, H. Lochs, and H. Rinneberg (2003). Time gated fluorescence spectroscopy in Barrett’s oesophagus. Gut 52, 28–33.Google Scholar
  158. 158.
    K. T. Moesta, B. Ebert, T. Handke, D. Nolte, C. Nowak, W. E. Haensch, R. K. Pandey, T. J. Dougherty, H. Rinneberg, and P. M. Schlag (2001). Protoporphyrin IX occurs naturally in colorectal cancers and their metastases. Cancer Res. 61, 991– 999.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • U. Resch-Genger
    • 1
  • K. Hoffmann
    • 1
  • W. Nietfeld
    • 2
  • A. Engel
    • 3
  • J. Neukammer
    • 4
  • R. Nitschke
    • 5
  • B. Ebert
    • 4
  • R. Macdonald
    • 4
  1. 1.Federal Institute for Materials Research and TestingWorking Group Optical Spectroscopy, Division I.3, BAMBerlinGermany
  2. 2.Max Planck Institute for Molecular GeneticsBerlinGermany
  3. 3.Schott AGMainzGermany
  4. 4.Physikalisch-Technische Bundesanstalt, Dept. 8.3, PTBBerlinGermany
  5. 5.Life Imaging Center, Institute of Biology IDevelopmental BiologyFreiburgGermany

Personalised recommendations