Journal of Fluorescence

, Volume 15, Issue 2, pp 153–160

Effects of Refractive Index and Viscosity on Fluorescence and Anisotropy Decays of Enhanced Cyan and Yellow Fluorescent Proteins

  • Jan Willem Borst
  • Mark A. Hink
  • Arie van Hoek
  • Antonie J. W. G. Visser
Article

Abstract

The fluorescence lifetime strongly depends on the immediate environment of the fluorophore. Time-resolved fluorescence measurements of the enhanced forms of ECFP and EYFP in water–glycerol mixtures were performed to quantify the effects of the refractive index and viscosity on the fluorescence lifetimes of these proteins. The experimental data show for ECFP and EYFP two fluorescence lifetime components: one short lifetime of about 1 ns and a longer lifetime of about 3.7 ns of ECFP and for EYFP 3.4. The fluorescence of ECFP is very heterogeneous, which can be explained by the presence of two populations: a conformation (67% present) where the fluorophore is less quenched than in the other conformation (33% present). The fluorescence decay of EYFP is much more homogeneous and the amplitude of the short fluorescence lifetime is about 5%. The fluorescence anisotropy decays show that the rotational correlation time of both proteins scales with increasing viscosity of the solvent similarly as shown earlier for GFP. The rotational correlation times are identical for ECFP and EYFP, which can be expected since both proteins have the same shape and size. The only difference observed is the slightly lower initial anisotropy for ECFP as compared to the one of EYFP.

Keywords

ECFP EYFP fluorescence lifetime FLIM FRET rotational correlation time refractive index viscosity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Y. Tsien (1998). The green fluorescent protein. Annu. Rev. Biochem. 67, 509–544.PubMedGoogle Scholar
  2. 2.
    A. Miyawaki, A. Sawano, and T. Takako (2003). Lighting up cells: Labeling proteins with fluorophores. Suppl. Nature Cell Biol. 5, S1–S7.Google Scholar
  3. 3.
    M. A. Hink, N. V. Visser, J. W. Borst, A. van Hoek, and A. J. W. G. Visser (2003). Practical use of corrected fluorescence excitation and emission spectra of fluorescent proteins in Förster Resonance Energy Transfer (FRET) studies. J. Fluoresc. 13, 185–188.Google Scholar
  4. 4.
    K. Suhling, J. Siegel, D. Phillips, P. M. W. French, S. Lévêque-Fort, S. E. D. Webb, and D. M. Davis (2002). Imaging the environment of green fluorescent protein. Biophys. J. 83, 3589–3595.PubMedGoogle Scholar
  5. 5.
    S. J. Strickler and R. A. Berg (1962). Relationship between absorption intensity and fluorescence lifetime of molecules. J. Chem. Phys. 37, 814–820.Google Scholar
  6. 6.
    D. Toptygin, R. S. Savtchenko, N. D. Meadow, S. Roseman, and L. Brand (2002). Effect of solvent refractive index on the excited-state lifetime of a single tryptophan residue in a protein. J. Phys. Chem. B. 106, 3724–3734.Google Scholar
  7. 7.
    K. Suhling, D. M. Davis, and D. Phillips (2002). The influence of solvent viscosity on the fluorescence decay and time-resolved anisotropy of green fluorescent protein., J. Fluoresc. 12, 91–95.Google Scholar
  8. 8.
    A. Szabo (1984) Theory of fluorescence depolarization in macromolecules and membranes. J. Chem. Phys. 81, 150–167.Google Scholar
  9. 9.
    J. R. Lakowicz (1999). Principles of Fluorescence Spectroscopy, 2nd ed., Kluwer Academic/Plenum Publishers, New York.Google Scholar
  10. 10.
    M. A. Uskova, J. W. Borst, A. van Hoek, A. Schots, N. L. Klyachko, and A. J. W. G. Visser (2000). Fluorescence dynamics of green fluorescent proteins in AOT reversed micelles. Biophys. Chem. 87, 73–84.PubMedGoogle Scholar
  11. 11.
    A. Volkmer, V. Subramanian, D. J. S. Birch, and T. M. Jovin (2000). One- and two-photon excited fluorescence lifetimes and anisotropy decays of green fluorescent proteins. Biophys. J. 78, 1589–1598.PubMedGoogle Scholar
  12. 12.
    N. V. Visser, M. A. Hink, J. W. Borst, G. N. M. van der Krogt, and A. J. W. G. Visser (2002). Circular dichroism spectroscopy of fluorescent proteins. FEBS Lett. 521, 31–35.PubMedGoogle Scholar
  13. 13.
    K. Vos, A. van Hoek, and A. J. W. G. Visser (1987). Application of a reference deconvolution method to tryptophan fluorescence in proteins. A refined description of rotational dynamics. Eur. J. Biochem. 165, 55–63.PubMedGoogle Scholar
  14. 14.
    A. van Hoek and A. J. W. G. Visser (1985). Artefact and distortion sources in time correlated single photon counting. Anal. Instrum. 14, 359–378.Google Scholar
  15. 15.
    A. V. Digris, V. V. Skakun, E. G. Novikov, A. van Hoek, A. Claiborne, and A. J. W. G. Visser (1999). Thermal stability of a flavoprotein assessed from associative analysis of polarized time-resolved fluorescence spectroscopy. Eur. Biophys. J. 28, 526–531.PubMedGoogle Scholar
  16. 16.
    A. van Hoek, K. Vos, and A. J. W. G. Visser (1987). Ultrasensitive time-resolved polarized fluorescence spectroscopy as a tool in biology and medicine. IEEE J. Quant. Electron. QE-23, 1812–1820.Google Scholar
  17. 17.
    J. M. Beechem, E. Gratton, M. Ameloot, J. R. Knutson, and L. Brand (1991). The global analysis of fluorescence intensity and anisotropy decay data: Second generation theory and programs. in J. R. Lakowicz (Ed.), Topics in Fluorescence Spectroscopy, Plenum Press, New York, pp. 241–305.Google Scholar
  18. 18.
    M. Tramier, I. Gautier, T. Piolot, S. Ravalet, K. Kemnitz, J. Coppey, C. Durieux, V. Mignotte, and M. Coppey-Moisan (2002). Picosecond-hetero-FRET microscopy to probe protein–protein interactions in live cells. Biophys. J. 83, 3570–3577.PubMedGoogle Scholar
  19. 19.
    M. A. Rizzo, G. H. Springer, B. Granada, and D. W. Piston (2004). An improved cyan fluorescent protein variant useful for FRET. Nature Biotechnol. 22, 445–449.Google Scholar
  20. 20.
    S. Habuchi, M. Cotlet, J. Hofkens, G. Dirix, J. Michiels, J. Vanderleyden, V. Subramanian, and F. C. De Schryver (2002). Resonance energy transfer in a calcium concentration-dependent cameleon protein. Biophys. J. 83, 3499–3506.PubMedGoogle Scholar
  21. 21.
    J. Hyun Bae, M. Rubini, G. Jung, G. Wiegand, M. H. J. Seifert, M. K. Azim, J.-S. Kim, A. Zumbusch, T. A. Holak, L. Moroder, R. Huber, and N. Budisa (2003). Expansion of the genetic code enables design of a novel “gold” class of green fluorescent proteins. J. Mol. Biol. 328, 1071–1081.PubMedGoogle Scholar
  22. 22.
    J. W. Borst, M. A. Hink, A. van Hoek, and A. J. W. G. Visser (2003). Multiphoton microspectroscopy in living plant cells. Proc. SPIE 4963, 231–238.Google Scholar
  23. 23.
    F. S. Wouters, P. J. Verveer, and P. I. H. Bastiaens (2001). Imaging biochemistry inside cells. Trends Cell Biol. 11, 203–210.PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Jan Willem Borst
    • 1
  • Mark A. Hink
    • 1
  • Arie van Hoek
    • 2
  • Antonie J. W. G. Visser
    • 1
    • 3
  1. 1.Laboratory of BiochemistryMicroSpectroscopy Centre, Wageningen UniversityThe Netherlands
  2. 2.Laboratory of BiophysicsMicroSpectroscopy Centre, Wageningen UniversityThe Netherlands
  3. 3.Department of Structural BiologyFaculty of Earth and Life Sciences, Vrije UniversiteitThe Netherlands

Personalised recommendations