Journal of Fluorescence

, Volume 16, Issue 2, pp 267–273 | Cite as

Absolute Measurements of Photoluminescence Quantum Yields of Solutions Using an Integrating Sphere

  • Laurent Porrès
  • Adam Holland
  • Lars-Olof Pålsson
  • Andrew P. Monkman
  • Chris Kemp
  • Andrew BeebyEmail author
Original Article

We demonstrate that absolute measurements of the photoluminescence quantum yield of solutions can be made using an integrating sphere and a conventional fluorimeter. With this method the need for measurements against a luminescence standard is overcome. The sphere is mounted inside a commercial fluorimeter, which gives flexibility in excitation and emission wavelength ranges. A number of compounds have been investigated and the results are compared to literature values and data obtained using a comparative method.


integrating sphere photoluminescence quantum yield solution 



We gratefully acknowledge the assistance of Mr J. Hodgson and Mr N. Holmes of the Department of Chemistry mechanical workshop. We also thank Miss Karen Findlay for assistance with some of measurements and Prof Todd B. Marder (Durham University) for providing some of the compounds. A.B., L.P., L.O.P., and A.P.M. thank OneNorth East and CENAMPS for funding through the Nanotechnology IUC Programme.


  1. 1.
    J. R. Lackowicz (1999). Principles of Fluorescence Spectroscopy, 2nd ed., Kluwer, New York.Google Scholar
  2. 2.
    J. N. Demas and G. A. Crosby (1971). J. Phys. Chem. 75, 991.CrossRefGoogle Scholar
  3. 3.
    J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burn, and A. B. Holmes (1990). Nature 347, 539.CrossRefGoogle Scholar
  4. 4.
    G. Weber and F. W. J. Teale (1957). Trans. Faraday Soc. 53, 646.CrossRefGoogle Scholar
  5. 5.
    A. T. R. Williams, S. A. Winefield, and J. N. Miller (1983). Analyst 108, 1067.CrossRefGoogle Scholar
  6. 6.
    J. B. Birks (1970). Photophysics of Aromatic Molecules, Wiley, New York.Google Scholar
  7. 7.
    S. I. Vavilov (1924). Zeitung. der. Physik. 22, 266.Google Scholar
  8. 8.
    N. C. Greenham, I. D. W. Samuel, G. R. Hayes, R. T. Phillips, Y. A. R. Kessener, S. C. Moratti, A. B. Holmes, and R. H. Friend (1995) Chem. Phys. Lett. 241, 89.CrossRefGoogle Scholar
  9. 9.
    J. C. de Mello, H. F. Wittmann, and R. H. Friend (1997). Adv. Mater. 9, 230.CrossRefGoogle Scholar
  10. 10.
    L.-O. Pålsson and A. P. Monkman (2002). Adv. Mater. 14, 757.CrossRefGoogle Scholar
  11. 11.
    J. A. Gardecki and M. Marconelli (1998). Appl. Spect. 52, 1179.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Laurent Porrès
    • 1
  • Adam Holland
    • 2
  • Lars-Olof Pålsson
    • 3
  • Andrew P. Monkman
    • 3
  • Chris Kemp
    • 2
  • Andrew Beeby
    • 1
    Email author
  1. 1.Department of ChemistryDurham UniversityDurhamUnited Kingdom
  2. 2.HORIBA Jobin Yvon LtdStanmoreUnited Kingdom
  3. 3.Department of PhysicsDurham UniversityDurhamUnited Kingdom

Personalised recommendations