Journal of Fluorescence

, Volume 16, Issue 2, pp 185–190 | Cite as

Comparison of Trifluoroacetyl Monostyryl and Distyryl Dyes: Effects of Chromophore Elongation on the Spectral Properties and Chemical Reactivity

  • Gerhard J. Mohr
  • Ulrich-W. Grummt

The trifluoroacetyl distyryl derivative 1-[4-(2-{4-[2-(4-dibutylaminophenyl)-vinyl]-phenyl}-vinyl)-phenyl]-2,2,2-trifluoroethanone was compared with the related monostyryl derivative 1-{4-[2-(4-dibutylaminophenyl)-vinyl]-phenyl}-2,2,2-trifluoroethanone with respect to spectral properties and sensitivity to amines. Both trifluoroacetyl derivatives had their absorbance maximum at around 445 nm. The fluorescence of the distyryl dye, however, was observed at significantly longer wavelengths than that of the monostyryl dye, indicating the effect of structural extension of the chromophore system. Furthermore, the distyryl dye exhibited significantly smaller quantum yields in polar solvents than the monostyryl dye.

Both dyes were capable of chemically reacting with amines in that their trifluoroacetyl function was converted into a hemiaminal. Consequently, absorbance and fluorescence of both dyes were shifted to shorter wavelengths. The positions of the fluorescence maxima of the spectra when converting from trifluoroacetyl to hemiaminal form were shifted by an almost identical amount for both mono- and distyryl derivative. The hemiaminal form of the distyryl derivative, however, exhibited much larger quantum yields in both polar and nonpolar solvents than the hemiaminal form of the monostyryl dye. The structural extension of the chromophore affected the sensitivity to amines by enhancing the chemical reactivity of the distyryl dye over the monostyryl derivative.


Fluororeactand styryl dyes distyryl dyes amines 



This work was supported by the Heisenberg Fellowship MO 1062/1-1 and the research grant MO 1062/2-1 of Deutsche Forschungsgemeinschaft, and by Fluka Chemie GmbH. This support is gratefully acknowledged. We would also like to thank Heidrun Müller for technical support


  1. 1.
    E. Kolomiets and J.-M. Lehn (2005). Double dynamers: Molecular and supramolecular double dynamic polymers. Chem. Commun. 1519–1521.Google Scholar
  2. 2.
    T. Ono, T. Nobori, and J.-M. Lehn (2005). Dynamic polymer blends—component recombination between neat dynamic covalent polymers at room temperature. Chem. Commun. 1522–1524.Google Scholar
  3. 3.
    T.-H. Kim and T. M. Swager (2003). A fluorescent self-amplifying wavelength-responsive sensory polymer for fluoride ions. Angew. Chem. 115, 4951–4954.CrossRefGoogle Scholar
  4. 4.
    G. J. Mohr (2005). Covalent bond formation as an analytical tool to optically detect neutral and anionic analytes. Sens. Actuat. B 107, 2–13.CrossRefGoogle Scholar
  5. 5.
    G. J. Mohr and U.-W. Grummt (2004). Photochemistry of the amine-sensor dye 4-N,N-dioctylamino-4′-trifluoroacetylazobenzene. J. Photochem. Photobiol., A: Chem. 163, 341– 345.CrossRefGoogle Scholar
  6. 6.
    G. J. Mohr (2004). Chromo- and fluororeactands: Indicators for detection of neutral analytes by using reversible covalent-bond chemistry. Chem. Eur. J. 10, 1083–1090.CrossRefGoogle Scholar
  7. 7.
    G. J. Mohr (2004). Tailoring the sensitivity and spectral properties of a chromoreactand for the detection of amines and alcohols. Anal. Chim. Acta 508, 233–237.CrossRefGoogle Scholar
  8. 8.
    G. J. Mohr, M. Wenzel, F. Lehmann, and P. Czerney (2002). A chromoreactand for optical sensing of amphetamines. Anal. Bioanal. Chem. 374, 399–402.PubMedCrossRefGoogle Scholar
  9. 9.
    S. Yasui, M. Matsuoka, M. Takao, and T. Kitao (1988). The effect of annelation on the absorption spectra of polyazo dyes. J. Soc. Dyers Colour. 104, 284–288.Google Scholar
  10. 10.
    G. J. Mohr, F. Lehmann, U.-W. Grummt, and U. E. Spichiger-Keller (1997). Fluorescent ligands for optical sensing of alcohols: Synthesis and characterisation of p-N,N-dialkylaminotrifluoroacetylstilbenes. Anal. Chim. Acta 344, 215–225.CrossRefGoogle Scholar
  11. 11.
    J. N. Demas and G. A. Crosby (1971). Measurement of photoluminescence quantum yields—review. J. Phys. Chem. 75, 991–1024.CrossRefGoogle Scholar
  12. 12.
    G. J. Mohr, C. Demuth, and U. E. Spichiger (1998). Application of chromogenic and fluorogenic reactands in the optical sensing of dissolved aliphatic amines. Anal. Chem. 70, 3868–3873.CrossRefGoogle Scholar
  13. 13.
    A. Hassner, D. Birnbaum, and L. M. Loew (1984). Charge-shift probes of membrane potential. Synthesis. J. Org. Chem. 49, 2546–2551.CrossRefGoogle Scholar
  14. 14.
    C. H. Cheng and E. M. Pearce (1980). Polymers containing fluorinated ketone groups. III. Synthesis of styrene/p-vinyltrifluoroacetophenone copolymers by modification of polystyrene and the copolymerization of monomers. J. Polym. Sci. Polym. Chem. Ed. 18, 1883–1888.CrossRefGoogle Scholar
  15. 15.
    O. S. Wolfbeis (2004). Fiber-optic chemical sensors and biosensors. Anal. Chem. 76, 3269–3284.PubMedCrossRefGoogle Scholar
  16. 16.
    A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugson, A. J. M. Huxley, C. P. McCoy, J. T. Rademacher, and T. E. Rice (1997). Signaling recognition events with fluorescent sensors and switches. Chem. Rev. 97, 1515–1566.PubMedCrossRefGoogle Scholar
  17. 17.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. K. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople (1998). Gaussian 98, Revision A.7, Gaussian, Inc., Pittsburgh, PA.Google Scholar
  18. 18.
    L. Serrano-Andres and M. Merchan (2005). Quantum chemistry of the excited state: 2005 overview. J. Mol. Struct. Theochem. 729, 99–108.CrossRefGoogle Scholar
  19. 19.
    H. Meier, J. Gerold, H. Kolshorn, and B. Mühling (2004). Extension of conjugation leading to bathochromic or hypsochromic effects in OPV series. Chem. Eur. J. 10, 360– 370.CrossRefGoogle Scholar
  20. 20.
    G. J. Mohr (2001). Chromogenic and Fluorogenic Reactands: New Tools for Molecular Recognition of Neutral Analytes, Habilitation Thesis. Swiss Federal Institute of Technology, Zurich.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Institute of Physical ChemistryFriedrich-Schiller University JenaJenaGermany

Personalised recommendations