Journal of Fluorescence

, Volume 16, Issue 3, pp 325–336 | Cite as

3D Particle Tracking on a Two-Photon Microscope

  • Timothy Ragan
  • Hayden Huang
  • Peter So
  • Enrico Gratton
Article

A 3D single-particle-tracking (SPT) system was developed based on two-photon excitation fluorescence microscopy that can track the motion of particles in three dimensions over a range of 100 μm and with a bandwidth up to 30 Hz. We have implemented two different techniques employing feedback control. The first technique scans a small volume around a particle to build up a volumetric image that is then used to determine the particle's position. The second technique scans only a single plane but utilizes optical aberrations that have been introduced into the optical system that break the axial symmetry of the point spread function and serve as an indicator of the particle's axial position. We verified the performance of the instrument by tracking particles in well-characterized models systems. We then studied the 3D viscoelastic mechanical response of 293 kidney cells using the techniques. Force was applied to the cells, by using a magnetic manipulator, onto the paramagnetic spheres attached to the cell via cellular integrin receptors. The deformation of the cytoskeleton was monitored by following the motion of nearby attached fluorescent polystyrene spheres. We showed that planar stress produces strain in all three dimensions, demonstrating that the 3D motion of the cell is required to fully model cellular mechanical responses.

KEY WORDS

Particle tracking two-photon cell mechanics 

Notes

ACKNOWLEDGMENTS

We thank Jan Lammerding for help with calibration of the paramagnetic bead force measurements shown in Figs. 1 and 2.

REFERENCES

  1. 1.
    L. S. Barak and W. W. Webb (1981). Fluorescent low-density lipoprotein for observation of dynamics of individual receptor complexes on cultured human-fibroblasts. J. Cell Biol. 90(3), 595–604.PubMedCrossRefGoogle Scholar
  2. 2.
    M. Debrander, G. Geuens, R. Nuydens, M. Moeremans, and J. Demey (1985). Probing microtubule-dependent intracellular motility with nanometer particle video ultramicroscopy (nanovid ultramicroscopy). Cytobios. 43(174), 273–283.Google Scholar
  3. 3.
    T. Fujiwara, K. Ritchie, H. Murakoshi, K. Jacobson, and A. Kusumi (2002). Phospholipids undergo hop diffusion in compartmentalized cell membrane. J. Cell Biol. 157(6), 1071–1081.PubMedCrossRefGoogle Scholar
  4. 4.
    K. Murase, T. Fujiwara, Y. Umemura, K. Suzuki, R. Iino, H. Yamashita, M. Saito, H. Murakoshi, K. Ritchie, and A. Kusumi (2004). Ultrafine membrane compartments for molecular diffusion as revealed by single molecule techniques. Biophys. J. 86(6), 4075–4093.PubMedCrossRefGoogle Scholar
  5. 5.
    K. Kis-Petikova and E. Gratton (2004). Distance measurement by circular scanning of the excitation beam in the two-photon microscope. Microsc. Res. Tech. 63(1), 34–49.PubMedCrossRefGoogle Scholar
  6. 6.
    A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin (2003). Myosin V walks hand-over-hand: Single fluorophore imaging with 1.5-nm localization. Science 300(5628), 2061–2065.PubMedCrossRefGoogle Scholar
  7. 7.
    H. Bornfleth, P. Edelmann, D. Zink, T. Cremer, and C. Cremer (1999). Quantitative motion analysis of subchromosomal foci in living cells using four-dimensional microscopy. Biophys. J. 77(5), 2871–2886.PubMedGoogle Scholar
  8. 8.
    D. D. Li, J. Xiong, A. L. Qu, and T. Xu (2004). Three-dimensional tracking of single secretory granules in live PC12 cells. Biophys. J. 87(3), 1991–2001.PubMedCrossRefGoogle Scholar
  9. 9.
    W. F. Marshall, A. Straight, J. F. Marko, J. Swedlow, A. Dernburg, A. Belmont, A. W. Murray, D. A. Agard, and J. W. Sedat (1997). Interphase chromosomes undergo constrained diffusional motion in living cells. Curr. Biol. 7(12), 930–939.PubMedCrossRefGoogle Scholar
  10. 10.
    D. Thomann, D. R. Rines, P. K. Sorger, and G. Danuser (2002). Automatic fluorescent tag detection in 3D with super-resolution: Application to the analysis of chromosome movement. J. Microsc. Oxf. 208, 49–64.CrossRefGoogle Scholar
  11. 11.
    R. M. Dickson, D. J. Norris, Y. L. Tzeng, and W. E. Moerner (1996). Three-dimensional imaging of single molecules solvated in pores of poly(acrylamide) gels. Science 274(5289), 966–969.PubMedCrossRefGoogle Scholar
  12. 12.
    I. M. Peters, Y. van Kooyk, S. J. van Vliet, B. G. de Grooth, C. G. Figdor, and J. Greve (1999). 3D single-particle tracking and optical trap measurements on adhesion proteins. Cytometry 36(3), 189–194.PubMedCrossRefGoogle Scholar
  13. 13.
    M. Speidel, A. Jonas, and E. L. Florin (2003). Three-dimensional tracking of fluorescent nanoparticles with subnanometer precision by use of off-focus imaging. Opt. Lett. 28(2), 69–71.PubMedGoogle Scholar
  14. 14.
    H. P. Kao, A. S. Verkman. (1994). Tracking of Single Fluorescent Particles in 3 Dimensions - Use of Cylindrical Optics to Encode Particle Position. Biophys. J. 67(3), 1291–1300.PubMedGoogle Scholar
  15. 15.
    H. Huang, C. Y. Dong, H.-S. Kwon, J. D. Sutin, R. D. Kamm, and P. T. C. So (2002). Three-dimensional cellular deformation analysis with a two-photon magnetic manipulator workstation. Biophys. J. 82(4), 2211–2223.PubMedGoogle Scholar
  16. 16.
    A. R. Bausch, W. Moller, and E. Sackmann (1999). Measurement of local viscoelasticity and forces in living cells by magnetic tweezers. Biophys. J. 76(1 Pt 1), 573–579.PubMedGoogle Scholar
  17. 17.
    A. Bausch, F. Ziemann, A. Boulbitch, K. Jacobson, and E. Sackmann (1998). Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry. Biophys. J. 75, 2038–2049.PubMedGoogle Scholar
  18. 18.
    H. Huang, R. D. Kamm, PTC So, and R. T. Lee (2001). Receptor-based differences in human aortic smooth muscle cell membrane stiffness. Hypertension 38(5), 1158–1161.PubMedGoogle Scholar
  19. 19.
    B. P. Helmke, A. B. Rosen, and P. F. Davies (2003). Mapping mechanical strain of an endogenous cytoskeletal network in living endothelial cells. Biophys. J. 84(4), 2691–2699.PubMedCrossRefGoogle Scholar
  20. 20.
    B. P. Helmke, D. B. Thakker, R. D. Goldman, and P. F. Davies (2001). Spatiotemporal analysis of flow-induced intermediate filament displacement in living endothelial cells. Biophys. J. 80(1), 184–194.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Timothy Ragan
    • 1
    • 2
  • Hayden Huang
    • 1
  • Peter So
    • 1
  • Enrico Gratton
    • 2
  1. 1.Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.University of Illinois at Urbana-Champaign, LFD/PhysicsUrbanaUSA

Personalised recommendations