Journal of Fluorescence

, Volume 16, Issue 1, pp 43–46 | Cite as

Influence of Chemical Environment on the Optical Properties in Transition Metal Ions Doped Materials

Original Article

The sensibility of luminescent properties in transition metal doped materials to the matrices' chemical environment is explained in this paper, this is because of their strong phonon-electron coupling which are caused by the 3d electrons exposed nature. The influence of the chemical environments on the Mn2+-doped materials' optical properties, including the structure type of coordinate polyhedron, the polyhedral bridge linking manner and the lattice parameter, was illustrated in detail in this work. The impact of crystal field strength parameter (10 Dq) on the maximum energy differentiae in spontaneous emission band of Cr3+:4T2g4A2g and in excited state absorption band 4T2g4T1g (4F), and covalent bond intension's impact on the optical properties of Os4+ were also analyzed. This work's purpose is to discover the principle of the sensibility character, then we can use it to optimal the design of materials in order to find the excellent luminescent materials for practical utilization.

KEY WORDS:

Transition metal ions optical properties chemical environment 

Notes

ACKNOWLEDGMENTS

This work was supported by National Natural Science Foundation of China (Grant No. 60307004 and 50472053), Natural Foundation of Guangdong Province, PR China (Grant No. 04200036), Science and Technology Program of Guang Zhou, Guang-dong province, PR China (Grant No. 2004Z2-D0131 and 2004A10602002).

REFERENCES

  1. 1.
    Z. L. Fang (1992). Semiconductor Luminescent Materials and its' Apparatus, Fudan University Press, Shanghai, China, pp. 275–297 (in Chinese).Google Scholar
  2. 2.
    X. E. Yu (1997). Practicality Luminescent Materials and Optronics Mechanism, China Light Industry Press, Beijing, pp. 6–33 (in Chinese).Google Scholar
  3. 3.
    Z. G. Xiao (2002). Light Deposit Materials and its' Production [M], China Light Industry Press, Beijing, pp. 191–208 (in Chinese).Google Scholar
  4. 4.
    J. Y. Sun, H. L. Du, and W. X. Hu (2003). Solid State Luminescent Materials, Environment Science and Engineering Print Centre of Chemical Industry Press, Beijing, pp. 14–18 (in Chinese).Google Scholar
  5. 5.
    J. Y. Li (2003). Rare Earth Doped Luminescent Materials and its' Application, Materials Science and Engineering Print Centre of Chemical Industry Press, Beijing, pp. 14–16 (in Chinese).Google Scholar
  6. 6.
    L. W. Yang, Z. W. Liu, and S. G. Xiao (2002). Nat. Sci. J. Xiangtan Univ. 24(4), 29 (in Chinese).Google Scholar
  7. 7.
    F. Su, Z. Deng, and Z. Jiang (2005). J. Funct. Mater. 36(5), 655–657 (in Chinese).Google Scholar
  8. 8.
    Z. Yang, S. Xu, L. Hu, et al. (2004). J. Alloys Compd. 370, 94–98.CrossRefGoogle Scholar
  9. 9.
    G. M. Salley, O. S. Wenger, K. W. Kramer, et al. (2002). Curr. Opin. Solid State Mater. Sci. 6, 487–493.CrossRefGoogle Scholar
  10. 10.
    O. S. Wenger, M. Wemuth, and H. U. Gudel (2002). J. Alloys Compd. 341, 342–348.CrossRefGoogle Scholar
  11. 11.
    R. Valience, O. S. Wenger, and H. U. Gudel (2000). Chem. Phys. Lett. 320, 639–644.CrossRefGoogle Scholar
  12. 12.
    C. Reinhard, P. Gerner, R. Valiente, et al. (2001). J. Lumin. 94/95, 331–335.CrossRefGoogle Scholar
  13. 13.
    P. Gerner, O. S. Wenger, R. Valiente, et al. (2001). Inorg. Chem. 40, 4524–4542.CrossRefGoogle Scholar
  14. 14.
    M. Diaz, L. R. Cases, et al. (1999). J. Lumin. 81, 53–60.CrossRefGoogle Scholar
  15. 15.
    O. S. Wenger and H. U. Gudel (2001). J. Chem. Phys. 114, 5832–5841.CrossRefGoogle Scholar
  16. 16.
    J. X. Zhang (2001). Optoelectronics, South China University of Technology Press, Guangzhou, China, p. 177.Google Scholar
  17. 17.
    O. S. Wenger and H. U. Gudel (2002). Chem. Phys. 117(2), 909–913.CrossRefGoogle Scholar
  18. 18.
    H. W. H. Lee, S. A. Payne, and L. L. Chase (1989). Phys. Rev. B 39, 8907–8914.CrossRefGoogle Scholar
  19. 19.
    R. Moncorge and T. Benyalton (1988). Phys. Rev. B 37, 5229–5238.Google Scholar
  20. 20.
    S. Heer, M. Wermuth, K. Kramer, et al. (2002). Phys. Rev. B 65, 125112–125121.CrossRefGoogle Scholar
  21. 21.
    S. Heer, M. Wermuth, K. Kramer, et al. (2001). J. Lumin. 95/96, 337–341.CrossRefGoogle Scholar
  22. 22.
    M. Wermuth and H. U. Gudel (2000). J. Lumin. 8789, 1014–1016.CrossRefGoogle Scholar
  23. 23.
    M. Wermuth and H. U. Gudel (2001). Chem. Phys. 114(3), 1393–1404.CrossRefGoogle Scholar
  24. 24.
    M. Wermuth and H. U. Gudel (1999). J. Am. Chem. Soc. 121(43), 10102–10111.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Institute of Optical Communication MaterialsCollege of Materials, Science and Engineering, South China University of TechnologyGuangzhouP.R. China

Personalised recommendations