Skip to main content
Log in

Time-Dependent Boundary Conditions During ELMs in ITER Plasma

  • Review Article
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

The boundary conditions (BCs) involving a plasma-wall transition (PWT) are crucial when estimating the particle and heat fluxes at the wall, and when simulating the edge plasma with fluid, gyro-kinetic and gyro-fluid codes. The aim of this work was to derive time-dependent BCs at the PWT for ELM-free, Type-I ELM and post-ELM states based on a kinetic test simulation in the ITER tokamak without neutrals, so as to obtain the steady state. This contribution describes the first results of attempts to address this issue for ITER simulations under high-performance conditions using the 1D3V electrostatic parallel Particle-in-Cell code BIT1 (Tskhakaya in Plasma Phys Control Fusion 59(11401):19pp, 2017). The burning plasma conditions correspond to the ITER Q = 10, 15 MA baseline at \(q_{95}\) = 3, for which the poloidal length of the 1D SOL is \(\sim\) 20 m from the inner to the outer target, assuming typical upstream separatrix parameters of \(n_e\) \(\sim\) 3 to 5 \(\cdot 10^{19}\) m\(^{-3}\), \(T_e\) \(\sim\) 100 to 150 eV and \(T_i\) \(\sim\) 200 to 300 eV. Inclined magnetic fields at targets of (\(\sim 5^{\circ }\)) are included, as are the particle collisions, with a total of 3.4 \(\cdot 10^{5}\) poloidal grid cells, giving shortening factors of 20. The results show that for the ELM-free state the BCs relate to the classic one; in the phase of the Type-I ELM, the BCs are increasing; and in the post-ELM, the BCs are decreasing, reaching the classic values. Taking into account this kind of BC dependence, we can provide realistic ITER plasma profiles for subsequent investigations. As this is a time-consuming process, the simulations are first conducted without neutrals, while in order to obtain realistic values for the BCs, the neutrals are added to the system. At a later stage, these will be used as BCs for the calculations of the ELM target heat loads using the SOLPS-ITER (Bonnin in Plasma Fusion Res 11:1403102, 2016; Wiesen in J Nucl Mater 463:480–484, 2015) code.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D. Tskhakaya. One-dimensional plasma sheath model in front of the divertor plates. Plasma Phys. Control. Fusion 59(11401), 19pp (2017)

  2. X. Bonnin, W. Dekeyser, R.A. Pitts, D. Coster, S. Voskoboynikov, S. Wiesen, Presentation of the new SOLPS-ITER code package for tokamak plasma edge modelling. Plasma Fusion Res. 11, 1403102 (2016)

    Article  ADS  Google Scholar 

  3. S. Wiesen, D. Reiter, V. Kotov, M. Baelmans, W. Dekeyser, A.S. Kukushkin, S.W. Lisgo, R.A. Pitts, V. Rozhansky, G. Saibene, I. Veselova, S. Voskoboynikov, The new SOLPS-ITER code package. J. Nucl. Mater. 463, 480–484 (2015)

    Article  ADS  Google Scholar 

  4. W. Fundamenski, R.A. Pitts, JET EFDA Contributors, A model of ELM filament energy evolution due to parallel losses. Plasma Phys. Control. Fusion 48(1), 109–156 (2006)

    Article  ADS  Google Scholar 

  5. D. Tskhakaya, S. Kuhn, Y. Tomita, K. Matyash, R. Schneider, F. Taccogna, Self-consistent simulations of the plasma-wall transition layer. Contrib. Plasma Phys. 48(1–3), 121–125 (2008)

    Article  ADS  Google Scholar 

  6. J.W. Connor, A. Kirk, H.R. Wilson, Edge localised modes (ELMs): experiments and theory. AIP Conf. Proc. 1013(1), 174 (2008)

    Article  ADS  Google Scholar 

  7. J.W. Connor, Edge-localized modesphysics and theory. Plasma Phys. Control. Fusion 40(5), 531542 (1998)

    Article  Google Scholar 

  8. A.S. Kukushkin, H.D. Pacher, V. Kotov, G.W. Pacher, D. Reiter, Finalizing the ITER divertor design: the key role of SOLPS modeling. Fusion Eng. Des. 86(12), 2865–2873 (2011)

    Article  Google Scholar 

  9. T.H. Osborne, R.J. Groebner, L.L. Lao, A.W. Leonard, R. Maingi, R.L. Miller, G.D. Porter, D.M. Thomas, R.E. Waltz, H-mode pedestal characteristics, ELMs, and energy confinement in ITER shape discharges on DIII-D. Plasma Phys. Control. Fusion 40(5), 845850 (1998)

    Article  Google Scholar 

  10. P.C. Stangeby, The Plasma Boundary of Magnetic Fusion Devices (Institute of Physics Publishing Ltd, Bristol, 2000)

    Book  Google Scholar 

  11. D.M. Harting, S. Wiesen, M. Groth, S. Brezinsek, G. Corrigan, G. Arnoux, P. Boerner, S. Devaux, J. Flanagan, A. Jarvinen, S. Marsen, D. Reiter, JET-EFDA Contributors, Intra-ELM phase modelling of a JET ITER-like wall H-mode discharge with EDGE2D-EIRENE. J. Nucl. Mater. 463, 493–497 (2015)

    Article  ADS  Google Scholar 

  12. R.A. Pitts, P. Andrew, G. Arnoux, T. Eich, W. Fundamenski, A. Huber, C. Siva, D. Tskhakaya, JET EFDA Contributors, ELM transport in the JET scrape-o layer. Nucl. Fusion 47(11), 1437–1448 (2007)

    Article  ADS  Google Scholar 

  13. D.P. Coster, A.V. Chankin, H.J. Klingshirn, X. Bonnin, A. Kukushkin, A. Loarte, SOLPS modelling of controlled ELMs for ITER, in 40th EPS Conference on Plasma Physics vol. 55(12) (2013), pp. P104–P107

  14. E. Havlckova, W. Fundamenski, V. Naulin, A.H. Nielsen, S. Wiesen, J. Horacek, J. Seidl, The effect of plasma fluctuations on parallel transport parameters in the SOL. J. Nucl. Mater. 415(1), S471–S474 (2011)

    Article  ADS  Google Scholar 

  15. C.K. Birdsall, A.B. Langdon, Plasma Physics Via Computer Simulation (Taylor and Francis, New York, 2005)

    Google Scholar 

  16. D. Tskhakaya, F. Subba, X. Bonnin, D.P. Coster, W. Fundamenski, R.A. Pitts, On kinetic effects during parallel transport in the SOL. Contrib. Plasma Phys. 48(1–3), 335–338 (2008)

    Google Scholar 

  17. J.T. Omotani, B.D. Dudson, Non-local approach to kinetic effects on parallel transport in fluid models of the scrape-off layer. Plasma Phys. Control. Fusion 55(5), 055009 (2013)

    Article  ADS  Google Scholar 

  18. V. Kotov, D. Reiter, A.S. Kukushkin. Numerical study of the ITER divertor plasma with the B2-EIRENE code package. Bericht des Forschungszentrums (2007)

  19. D. Tskhakaya, S. Kuhn, Y. Tomita, Formulation of boundary conditions for the unmagnetized multi-ion-component plasma sheath. Contrib. Plasma Phys. 46(7–9), 640–654 (2006)

    ADS  Google Scholar 

  20. W. Fundamenski, Parallel heat flux limits in the tokamak scrape-off layer. Plasma Phys. Control. Fusion 47(11), R163R208 (2005)

    Article  Google Scholar 

  21. A. Loarte, G. Saibene, R. Sartori, D. Campbell, M. Becoulet, L. Horton, T. Eich, A. Herrmann, G. Matthews, N. Asakura, A. Chankin, A. Leonard, G. Porter, G. Federici, G. Janeschitz, M. Shimada, M. Sugihara, Characteristics of type i ELM energy and particle losses in existing devices and their extrapolation to ITER. Plasma Phys. Control. Fusion 45(9), 1549–1569 (2003)

    Article  ADS  Google Scholar 

  22. M. Hosokawa, G.T.A. Huijsmans, A. Loart, T. Takizuka, N. Hayashi, Kinetic modelling of divertor fluxes during ELMs in ITER and effect of in/out divertor plasma asymmetries. Plasma Fusion Res. 11(1), 1403104 (2016)

    Article  ADS  Google Scholar 

  23. M. Hosokawa, A. Loarte, G.T.A. Huijsmans, T. Takizuka, N. Hayashi, J. Adamek, J. Seidl, J. Horacek, M. Komm, Modelling of the effects of divertor recycling conditions and toroidal field direction on divertor power and particle flux asymmetries between and during ELMs with PARASOL for COMPASS-like plasmas. Conference: 45th EPS Conference on Plasma Physics, 2018, Prague, Czech Republic. http://www.jspf.or.jp/PFR/PDF2016/pfr2016_11-1403104.pdf

  24. S. Dai, D. Wang, Impact of sheath evolution on ion impinging energy on the target during edge localized modes. Nucl. Fusion 58(5), 014006 (2018)

    Article  ADS  Google Scholar 

  25. K. Ibano, Y. Kikuchia, S. Togob, Y. Ueda, T. Takizuka, Estimation of suppressed erosion by vapor shielding at be and w walls under transient loads. Nucl. Fusion 59(1), 076001 (2019)

    Article  ADS  Google Scholar 

  26. D. Tskhakaya, S. Kuhn, The magnetised plasma-wall transition: theory and PIC simulation. Contrib. Plasma Phys. 44(5–6), 564–570 (2004)

    Article  ADS  Google Scholar 

  27. T. Gyergyek, J. Kovačič., Numerical analysis of ion temperature effects to the plasma wall transition using a one-dimensional two-fluid model. I. Finite debye to ionization length ratio. Phys. Plasmas 24(6), 063505 (2017)

    Article  ADS  Google Scholar 

  28. T. Gyergyek, J. Kovačič, Potential formation in front of an electrode close to the plasma potential studied by PIC simulation. Contrib. Plasmas Phys. 54(7), 647–668 (2014)

    Article  ADS  Google Scholar 

  29. A. Caruso, A. Cavaliere, The structure of the collisionless plasma–sheath transition. II Nuovo Cimento (1955–1965) 26(6), 1389–1404 (1962)

    Article  ADS  Google Scholar 

  30. D. Tskhakaya, A. Soba, R. Schneider, M. Borchardt, E. Yurtesen, J. Westerholm. PIC/MC code BIT1 for plasma simulations on HPC. 2010 18th Euromicro Conference on Parallel, Distributed and Network-based Processing (2010), pp. 476–481

  31. I. Vasileska, X. Bonnin, L. Kos, R. Pitts. SOLPS coupled fluid–kinetic modelling of hydrogen low power plasma in ITER divertor. In 26th International Conference Nuclear Energy for New Europe, Bled, Slovenia, 11–14 September (2017), pp. 713.1–713.8

  32. S. Langendorf, M. Walker, Effect of secondary electron emission on the plasma sheath. Phys. Plasmas 22(3), 033515 (2015)

    Article  ADS  Google Scholar 

  33. I. Vasileska, L. Kos. Kinetic simulations of ITER scrape-off layer, in 45th EPS Conference on Plasma Physics, Prague, Czech Republic (2018)

Download references

Acknowledgements

The simulations were performed on the EUROfusion High-Performance Computer (Marconi-Fusion) under the SOLDyn Grant. This work was carried out in part within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014–2018 and 2019–2020 under Grant Agreement No. 633053 (WP-EDU). The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivona Vasileska.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasileska, I., Kos, L. Time-Dependent Boundary Conditions During ELMs in ITER Plasma. J Fusion Energ 39, 212–220 (2020). https://doi.org/10.1007/s10894-020-00241-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-020-00241-w

Keywords

Navigation