Advertisement

Journal of Fusion Energy

, Volume 37, Issue 6, pp 325–332 | Cite as

Synthesis and adsorption properties of modified SDB carrier

  • Wenjiao Chen
  • Wenli Luo
  • Cailin Liu
  • Xianyan Ren
  • Haijun Yang
Original Research
  • 96 Downloads

Abstract

Styrene–divinylbenzene copolymer (SDB) is a key material for preparing Pt/SDB hydrophobic catalyst, which could be used for the treatment and purification of tritiated water. In this paper, a modified SDB (MSDB) carrier based on tert-butyl styrene (t-Bu-St), methyl methacrylate (MMA), styrene (St) and divinylbenzene (DVB) was prepared by aqueous suspension polymerization. Static adsorption experiment shows that the MSDB has the best adsorption performance at the molar ratio of St, DVB, t-Bu-St and MMA of 1:0.85:0.3:0.3 with n-heptane as porogen. The adsorption behavior of MSDB is analyzed by theoretical formulas. Data show that the adsorption process is in accordance with the Lagrange pseudo-first-order kinetics and Freundlich isotherm (1/n < 1), which is exothermic and entropy decrease (ΔH0 < 0, ΔS0 < 0) in a temperature range of 293.15–333.15 K.

Keywords

Hydrophobic catalyst Modification Adsorption Kinetics Isotherm 

Notes

Acknowledgements

We greatly acknowledge the financial support of the Southwest University of Science and Technology Doctoral Startup Foundation (Grant Number 16ZX7139).

References

  1. 1.
    S. Hu, L.P. Xiong, X.B. Ren, C.B. Wang, Y.M. Luo, Pt–Ir binary hydrophobic catalysts: effects of Ir content and particle size on catalytic performance for liquid phase catalytic exchange. Int. J. Hydrog. Energ. 34(20), 8723–8732 (2009)CrossRefGoogle Scholar
  2. 2.
    L. Dong, N. Yang, Y. Yang, W.Y. Li, Y. Quan, B. Deng, D. Meng, Y. Du, S. Li, Z.Y. Tan, Isotope exchange reaction in tritium-contaminated vacuum pump oil: mechanism and HTO effect. RSC Adv. 7(2), 890–896 (2017)CrossRefGoogle Scholar
  3. 3.
    J.C. He, H.Y. Wang, C.J. Xiao, J.M. Li, P. Chen, J.W. Hou, Preparation and performance of Pt/PTFE/Foam SiC as a hydrophobic catalyst for LPCE. Fusion Eng. Des. 113, 269–274 (2016)CrossRefGoogle Scholar
  4. 4.
    L.S. Ye, D.L. Luo, W. Yang, W.S. Guo, Q.Y. Xu, C.L. Jiang, Improve catalysts for hydrogen/deuterium exchange reactions. Int. J. Hydrog. Energ. 38(31), 13596–13603 (2013)CrossRefGoogle Scholar
  5. 5.
    W.H. Stevens. Process and catalyst for enriching a fluid with hydrogen isotopes. Canadian Patent No. 907292, August 15, 1972Google Scholar
  6. 6.
    I. Cristescu, I.R. Cristescu, L. Dorr et al., Commissioning of water detritiation and cryogenic distillation systems at TLK in view of ITER design. Fusion Eng. Des. 82(15), 2126–2132 (2007)CrossRefGoogle Scholar
  7. 7.
    C.C. Hsieh, J.F. Lee, Y.R. Liu, J.R. Chang, Structural investigation of catalyst deactivation of Pt/SDB for catalyst oxidation of VOC-containing waserwater. Waste Manag. 22(7), 739–745 (2002)CrossRefGoogle Scholar
  8. 8.
    K.M. Song, S.H. Sohn, D.W. Kang, S.W. Paek, D.H. Ahn, Installation of liquid phase catalytic exchange columns for the Wolsong tritium removal facility. Fusion Eng. Des. 82(15), 2264–2268 (2007)CrossRefGoogle Scholar
  9. 9.
    F. Huang, C. Meng, Hydrophobic platinum-polytetrafluoroethylene catalyst for hydrogen isotope separation. Int. J. Hydrog. Energ. 35(12), 6108–6112 (2010)CrossRefGoogle Scholar
  10. 10.
    J.H. Rolston, J.D. Hartog, J.P. Butler, The deuterium isotope separation factor between hydrogen and liquid water. J. Phys. Chem. 80(10), 1064–1067 (1976)CrossRefGoogle Scholar
  11. 11.
    J.H. Xie, Q. ZhangL, K.T. Chuang, Role of steam in partial oxidation of propylene over a Pd/SDB catalyst. Appl. Catal. A 220(1–2), 215–220 (2001)CrossRefGoogle Scholar
  12. 12.
    Y. Iwai, Upgrade in catalytic activity of hydrophobic platinum catalysts by Irradiation with electron beams. Fusion Eng. Des. 98, 1796–1799 (2015)CrossRefGoogle Scholar
  13. 13.
    J. Li, S. Suppiah, K. Kutchcokies. Wetproofed catalysts for hydrogen isotope exchange. US Patent No. 2005/0181938 A1(2005)Google Scholar
  14. 14.
    J.W. Vanderhoff, M.S. El-Aasser, F.J. Micale, Preparation of laser particles size monodisperse latexes in space: polymerize kinetics and process development. J. Dispers. Sci. Technol. 5(3–4), 231–246 (1984)CrossRefGoogle Scholar
  15. 15.
    J.W. Vanderhoff, F.V. DiStefano, M.S. El-Aasser, R. O’Leary, O.M. Shaffer, D.L. Visioli, Inverse emulsion polymerization of acrylamide: polymerization kinetics and process development. J. Dispers. Sci. Technol. 5(3–4), 323–363 (1984)CrossRefGoogle Scholar
  16. 16.
    V. Polshettiwar, B. Baruwati, R.S. Varma, Nanoparticle-supported and magnetically recoverable nickel catalyst: a robust and economic hydrogenation and transfer hydrogenation protocol. Green Chem. 11(1), 127–131 (2009)CrossRefGoogle Scholar
  17. 17.
    F.S. Han, Transition-metal-catalyzed Suzuki–Miyaura crossing-coupling reactions: a remarkable advance from palladium to nickel catalysts. Chem. Soc. Rev. 42(12), 5270–5297 (2013)CrossRefGoogle Scholar
  18. 18.
    M. Kruk, M. Jaroniec, Gas adsorption characterization of ordered organic-inorganic nanocomposite materials. Chem. Mater. 13(10), 3169–3183 (2015)CrossRefGoogle Scholar
  19. 19.
    Y. Naruse, Y. Matsuda, K. Tanaka, Tritium process laboratory at the JAERI. Fusion Eng. Des. 12(3), 293–317 (1990)CrossRefGoogle Scholar
  20. 20.
    W.H. Hu, H.F. Wu, M. Xu, F. Wu, Study on kinetics and thermodynamics of phosphorus adsorption onto PAC sludge. J. Environ. Eng. 5(10), 2287–2292 (2011)Google Scholar
  21. 21.
    A. Kilislioglu, B. Bilgin, Thermodynamic and kinetic investigations of uranium adsorption on amberlite IR-118H resin. Appl. Radiat. Isot. 58(2), 155–160 (2003)CrossRefGoogle Scholar
  22. 22.
    A. Agrawal, K.K. Sahu, Kinetic and isotherm studies of cadmium adsorption on manganese nodule residue. J. Hazard. Mater. 137(2), 915–924 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and Engineering, State Key Laboratory for Environment-Friendly Energy MaterialsSouthwest University of Science and TechnologyMianyangChina

Personalised recommendations