Advertisement

Journal of Fusion Energy

, Volume 38, Issue 1, pp 162–181 | Cite as

Encouraging Results and New Ideas for Fusion in Linear Traps

  • P. A. BagryanskyEmail author
  • A. D. Beklemishev
  • V. V. Postupaev
Original Research
  • 156 Downloads

Abstract

Results, obtained during the last decade on linear traps in Novosibirsk, verified the original concepts and led to discovery of new ways of plasma confinement in linear traps. It turns out that the multiple-mirror confinement, once thought to be suitable for pulsed fusion only, can work in tandem with gas-dynamic traps. Its helical-mirror variant can provide additional advantages for confinement of rotating plasmas such as radial and axial plasma pinch fluxes. The specially designed gas-dynamic mirrors can be run in the high-β “diamagnetic” regime, closely resembling the field-reversed configurations both in shape and in the quality of axial confinement. These new ideas form the groundwork of the possible road for linear traps to fusion.

Keywords

Controlled fusion Magnetic confinement Linear magnetic traps Axisymmetric magnetic configuration Alternative fusion fuels 

Notes

Acknowledgements

This work was funded by Russian Federal Agency for Scientific Organizations. Authors are grateful to members of GDT and GOL-3 teams and to BINP plasma theory group for their collaboration.

References

  1. 1.
    B.G. Logan, J.F. Clauser, F.H. Coensgen, D.L. Correl, W.F. Cummins, C. Gormezano, A.W. Molvik, W.E. Nexsen, T.C. Simonen, B.W. Stallard, W.C. Turner, Phys. Rev. Lett. 37, 1468 (1976).  https://doi.org/10.1103/PhysRevLett.37.1468 ADSGoogle Scholar
  2. 2.
  3. 3.
    A.A. Ivanov, A.V. Anikeev, P.A. Bagryansky, V.N. Bocharov, P.P. Deichuli, A.N. Karpushov, V.V. Maximov, A.A. Pod’minogin, A.I. Rogozin, T.V. Salikova, YuA Tsidulko, Phys. Plasmas 1, 1529 (1994).  https://doi.org/10.1063/1.870704 ADSGoogle Scholar
  4. 4.
    A. Burdakov, A. Azhannikov, V. Astrelin, A. Beklemishev, V. Burmasov, G. Derevyankin, V. Ivanenko, I. Ivanov, M. Ivantsivsky, I. Kandaurov, V. Konyukhov, I. Kotelnikov, V. Kovenya, T. Kozlinskaya, K. Kuklin, A. Kuznetsov, S. Kuznetsov, K. Lotov, I. Timofeev, A. Makarov, K. Mekler, V. Nikolaev, S. Popov, V. Postupaev, S. Polosatkin, A. Rovenskikh, A. Shoshin, I. Shvab, S. Sinitsky, Yu. Sulyaev, V. Stepanov, Yu. Trunyov, L. Vyacheslavov, V. Zhukov, Ed Zubairov, Fusion Sci. Technol. 51(2), 106 (2007).  https://doi.org/10.13182/FST07-A1327 Google Scholar
  5. 5.
    M. Inutake, T. Cho, M. Ichimura, K. Ishii, A. Itakura, I. Katanuma, Y. Kiwamoto, Y. Kusama, A. Mase, S. Miyoshi, Y. Nakashima, T. Saito, A. Sakasai, K. Sawada, I. Wakaida, N. Yamaguchi, K. Yatsu, Phys. Rev. Lett. 55, 939 (1985).  https://doi.org/10.1103/PhysRevLett.55.939 ADSGoogle Scholar
  6. 6.
    X. Sun, M. Liu, X. Xie et al., Journal of University of Science and Technology of China 44(5), 374 (2014).  https://doi.org/10.3969/j.issn.0253-2778.2014.05.003 Google Scholar
  7. 7.
    Ming Liu, Hongshen Yi, Munan Lin, Yanpeng Wang, Peiyun Shi, Jian Zheng, Xuan Sun, Rev. Sci. Instrum. 88, 053505 (2017).  https://doi.org/10.1063/1.4983801 ADSGoogle Scholar
  8. 8.
    M.W. Binderbauer, T. Tajima, M. Tuszewski, L. Schmitz, A. Smirnov, H. Gota, E. Garate, D. Barnes, B.H. Deng, E. Trask, X. Yang, S. Putvinski, R. Andow, N. Bolte, D.Q. Bui, F. Ceccherini, R. Clary, A.H. Cheung, K.D. Conroy, S.A. Dettrick, J.D. Douglass, P. Feng, L. Galeotti, F. Giammanco, E. Granstedt, D. Gupta, S. Gupta, A.A. Ivanov, J.S. Kinley, K. Knapp, S. Korepanov, M. Hollins, R. Magee, R. Mendoza, Y. Mok, A. Necas, S. Primavera, M. Onofri, D. Osin, N. Rath, T. Roche, J. Romero, J.H. Schroeder, L. Sevier, A. Sibley, Y. Song, L.C. Steinhauer, M.C. Thompson, A.D. Van Drie, J.K. Walters, W. Waggoner, P. Yushmanov, K. Zhai, AIP Conf. Proc. 1721, 030003 (2016).  https://doi.org/10.1063/1.4944019 Google Scholar
  9. 9.
    G.I. Budker, in Plasma Physics and the Problem of Controlled Thermonuclear Reactions, ed. By M.A. Leontovich, Vol. 3 (Pergamon Press, New York, 1959), p. 1Google Scholar
  10. 10.
    R.F. Post, in: Proceedings of the Second United Nations International Conference on the Peaceful Uses of Atomic Energy, Vol. 32 (United Nations, Geneva, 1958), p. 245Google Scholar
  11. 11.
    M.N. Rosenbluth, C.L. Longmire, Ann. Phys. 1, 120 (1957).  https://doi.org/10.1016/0003-4916(57)90055-6 ADSGoogle Scholar
  12. 12.
    T.K. Fowler, Nucl. Fusion 9, 3 (1969).  https://doi.org/10.1088/0029-5515/9/1/001 Google Scholar
  13. 13.
    M.S. Ioffe, B.B. Kadomtsev, Sov. Phys. Uspekhi 13, 225 (1970).  https://doi.org/10.1070/PU1970v013n02ABEH004208 ADSGoogle Scholar
  14. 14.
    D.E. Baldwin, Rev. Mod. Phys. 49, 317 (1977).  https://doi.org/10.1103/RevModPhys.49.317 ADSGoogle Scholar
  15. 15.
    T.C. Simonen, Proc. IEEE 69, 935 (1981).  https://doi.org/10.1109/PROC.1981.12108 ADSGoogle Scholar
  16. 16.
    C.C. Damm, J. Vacuum Sci. Technol. A: Vacuum Surf. Films 2, 710 (1984).  https://doi.org/10.1116/1.572554 ADSGoogle Scholar
  17. 17.
    D.D. Ryutov, Plasma Phys. Control. Fusion 28, 191 (1986).  https://doi.org/10.1088/0741-3335/28/1A/017 ADSGoogle Scholar
  18. 18.
    R.F. Post, Nucl. Fusion 27, 1579 (1987).  https://doi.org/10.1088/0029-5515/27/10/001 Google Scholar
  19. 19.
  20. 20.
    D.D. Ryutov, Plasma Devices Oper. 1, 79 (1990).  https://doi.org/10.1080/10519999008225530 Google Scholar
  21. 21.
    N. Hershkowitz, S. Miyoshi, D.D. Ryutov, Nucl. Fusion 30, 1761 (1990).  https://doi.org/10.1088/0029-5515/30/9/007 Google Scholar
  22. 22.
    R.F. Post, J.F. Santarius, Fusion Technol. 22, 13 (1992).  https://doi.org/10.13182/FST92-A30049 Google Scholar
  23. 23.
    R.F. Post, D.D. Ryutov, Comments Plasma Phys. Control. Fusion. 16, 375 (1995)Google Scholar
  24. 24.
    R.F. Post, in: Current Trends in International Fusion Research: Proceedings of the Second Symposium (Washington, DC, March 10–14, 1997), ed. by E. Panarella (NRC Research Press, Ottawa, Canada, 1999), p. 5Google Scholar
  25. 25.
    S.C. Prager, D.D. Ryutov, in Fusion Physics, ed. by M. Kikuchi, K. Lackner, M.Q. Tran (IAEA, Vienna, 2012), p. 1008Google Scholar
  26. 26.
    V.V. Mirnov, A.J. Lichtenberg, XX, in Reviews of Plasma Physics, vol. 19, ed. by B.B. Kadomtsev (Consultants Bureau, New York, 1996), p. 53Google Scholar
  27. 27.
    G.I. Dimov, Phys.-Usp. 48, 1129 (2005).  https://doi.org/10.1070/PU2005v048n11ABEH005804 ADSGoogle Scholar
  28. 28.
    V.I. Volosov, Plasma Phys. Rep. 35, 719 (2009).  https://doi.org/10.1134/S1063780X09090025 ADSGoogle Scholar
  29. 29.
    A.A. Ivanov, V.V. Prikhodko, Plasma Phys. Control. Fusion. 55, 063001 (2013).  https://doi.org/10.1088/0741-3335/55/6/063001 ADSGoogle Scholar
  30. 30.
    T.C. Simonen, J. Fusion Energ. 35, 63 (2015).  https://doi.org/10.1007/s10894-015-0017-2 Google Scholar
  31. 31.
    A.V. Burdakov, V.V. Postupaev, AIP Conf. Proc. 1771, 080002 (2016).  https://doi.org/10.1063/1.4964241 Google Scholar
  32. 32.
    A.A. Ivanov, V.V. Prikhodko, Phys.-Usp. 60, 509 (2017).  https://doi.org/10.3367/UFNe.2016.09.037967 ADSGoogle Scholar
  33. 33.
    O. Ågren, N. Savenko, Phys. Plasmas 11, 5041 (2004).  https://doi.org/10.1063/1.1799351 ADSGoogle Scholar
  34. 34.
    A.D. Beklemishev, Fusion Sci. Technol. 63(No. 1T), 355 (2013).  https://doi.org/10.13182/FST13-A16953 Google Scholar
  35. 35.
    A.D. Beklemishev, Phys. Plasmas 23, 082506 (2016).  https://doi.org/10.1063/1.4960129 ADSGoogle Scholar
  36. 36.
    P.A. Bagryansky, A.G. Shalashov, E.D. Gospodchikov, A.A. Lizunov, V.V. Maximov, V.V. Prikhodko, E.I. Soldatkina, A.L. Solomakhin, D.V. Yakovlev, Phys. Rev. Lett. 114, 205001 (2015).  https://doi.org/10.1103/PhysRevLett.114.205001 ADSGoogle Scholar
  37. 37.
    A.V. Arzhannikov, V.T. Astrelin, A.V. Burdakov, V.G. Ivanenko, V.S. Koidan, V.V. Konyukhov, A.G. Makarov, K.I. Mekler, P.I. Melnikov, V.S. Nikolaev, S.S. Perin, S.V. Polosatkin, V.V. Postupaev, A.F. Rovenskikh, S.L. Sinitsky, Fusion Technol. 35(No. 1T), 112 (1999).  https://doi.org/10.13182/FST99-A11963834 Google Scholar
  38. 38.
    W.C. Turner, J.F. Clauser, F.H. Coensgen, D.L. Correll, W.F. Cummins, R.P. Freis, R.K. Goodman, A.L. Hunt, T.B. Kaiser, G.M. Melin, W.E. Nexsen, T.C. Simonen, B.W. Stallard, Nucl. Fusion 19, 1011 (1979).  https://doi.org/10.1088/0029-5515/19/8/002 ADSGoogle Scholar
  39. 39.
    D.D. Ryutov, G.V. Stupakov, JETP Lett. 26, 174 (1977)ADSGoogle Scholar
  40. 40.
    D.D. Ryutov, H.L. Berk, B.I. Cohen, A.W. Molvik, T.C. Simonen, Phys. Plasmas 18, 092301 (2011).  https://doi.org/10.1063/1.3624763 ADSGoogle Scholar
  41. 41.
    P.A. Bagryansky, A.V. Anikeev, A.D. Beklemishev, A.S. Donin, A.A. Ivanov, YuV Kovalenko, E.P. Kruglyakov, A.A. Lizunov, A.V. Lvovskiy, V.V. Maximov, S.V. Murakhtin, E.I. Pinzhenin, V.V. Prikhodko, A.N. Pushkareva, V.Ya. Savkin, A.L. Solomakhin, K.V. Zaytsev, Fusion Sci. Technol. 59(No. 1T), 31 (2011).  https://doi.org/10.13182/FST11-A11568 Google Scholar
  42. 42.
    A.D. Beklemishev, P.A. Bagryansky, M.S. Chaschin, E.I. Soldatkina, Fusion Sci. Technol. 57, 351 (2010).  https://doi.org/10.13182/FST10-A9497 Google Scholar
  43. 43.
    A. Beklemishev, A. Anikeev, V. Astrelin, P. Bagryansky, A. Burdakov, V. Davydenko, D. Gavrilenko, A. Ivanov, I. Ivanov, M. Ivantsivsky, I. Kandaurov, S. Polosatkin, V. Postupaev, S. Sinitsky, A. Shoshin, I. Timofeev, Yu. Tsidulko, Fusion Sci. Technol. 63(No. 1T), 46 (2013).  https://doi.org/10.13182/FST13-A16872 Google Scholar
  44. 44.
    A. Shalashov, E. Gospodchikov, O. Smolyakova, P. Bagryansky, V. Malygin, M. Thumm, Phys. Plasmas 19, 052503 (2012).  https://doi.org/10.1063/1.4717757 ADSGoogle Scholar
  45. 45.
    A.G. Shalashov, E.D. Gospodchikov, O.B. Smolyakova, P.A. Bagryansky, V.I. Malygin, M. Thumm, Probl. Atomic Sci. Technol. Ser. Plasma Phys. (6), 49–51 (2012).Google Scholar
  46. 46.
    P.A. Bagryansky, S.P. Demin, E.D. Gospodchikov, YuV Kovalenko, V.I. Malygin, S.V. Murakhtin, V.Ya. Savkin, A.G. Shalashov, O.B. Smolyakov, A.L. Solomakhin, M. Thumm, D.V. Yakovlev, Fusion Sci. Technol. 63(No. 1T), 40 (2013).  https://doi.org/10.13182/FST13-A16871 Google Scholar
  47. 47.
    P.A. Bagryansky, YuV Kovalenko, V.Ya. Savkin, A.L. Solomakhin, D.V. Yakovlev, Nucl. Fusion 54, 082001 (2014).  https://doi.org/10.1088/0029-5515/54/8/082001 ADSGoogle Scholar
  48. 48.
    P.A. Bagryansky, E.D. Gospodchikov, YuV Kovalenko, A.A. Lizunov, V.V. Maximov, S.V. Murakhtin, E.I. Pinzhenin, V.V. Prikhodko, VYa. Savkin, A.G. Shalashov, E.I. Soldatkina, A.L. Solomakhin, D.V. Yakovlev, Fusion Sci. Technol. 68, 87 (2015).  https://doi.org/10.13182/FST14-864 Google Scholar
  49. 49.
    A.V. Anikeev, P.A. Bagryansky, P.P. Deichuli, A.A. Ivanov, A.N. Karpushov, V.V. Maximov, A.A. Pod’minogin, N.V. Stupishin, YuA Tsidulko, Phys. Plasmas 4, 347 (1997).  https://doi.org/10.1063/1.872493 ADSGoogle Scholar
  50. 50.
    T.C. Simonen, A. Anikeev, P. Bagryansky, A. Beklemishev, A. Ivanov, A. Lizunov, V. Maximov, V. Prikhodko, Yu. Tsidulko, J. Fusion Energ. 29, 558 (2010).  https://doi.org/10.1007/s10894-010-9342-7 ADSGoogle Scholar
  51. 51.
    A.A. Lizunov, D.J. Den Hartog, A.S. Donin, A.A. Ivanov, V.V. Prikhodko, Rev. Sci. Instrum. 82, 086105 (2011).  https://doi.org/10.1063/1.3624742 ADSGoogle Scholar
  52. 52.
    K.V. Zaytsev, A.V. Anikeev, P.A. Bagryansky, A.S. Donin, O.A. Korobeinikova, M.S. Korzhavina, YuV Kovalenko, A.A. Lizunov, V.V. Maximov, E.I. Pinzhenin, V.V. Prikhodko, E.I. Soldatkina, A.L. Solomakhin, VYa. Savkin, D.V. Yakovlev, Phys. Scripta T161, 014004 (2014).  https://doi.org/10.1088/0031-8949/2014/T161/014004 ADSGoogle Scholar
  53. 53.
    A.V. Anikeev, P.A. Bagryansky, K.V. Zaitsev, O.A. Korobeinikova, S.V. Murakhtin, D.I. Skovorodin, D.V. Yurov, Plasma Phys. Rep. 41, 773 (2015).  https://doi.org/10.1134/S1063780X15100025 ADSGoogle Scholar
  54. 54.
    P.A. Bagryansky, A.V. Anikeev, G.G. Denisov, E.D. Gospodchikov, A.A. Ivanov, A.A. Lizunov, YuV Kovalenko, V.I. Malygin, V.V. Maximov, O.A. Korobeinikova, S.V. Murakhtin, E.I. Pinzhenin, V.V. Prikhodko, V.Ya. Savkin, A.G. Shalashov, O.B. Smolyakova, E.I. Soldatkina, A.L. Solomakhin, D.V. Yakovlev, K.V. Zaytsev, Nucl. Fusion 55, 053009 (2015).  https://doi.org/10.1088/0029-5515/55/5/053009 ADSGoogle Scholar
  55. 55.
    P.A. Bagryansky, A.A. Ivanov, E.P. Kruglyakov, A.M. Kudryavtsev, YuA Tsidulko, A.V. Andriyash, A.L. Lukin, YuN Zouev, Fusion Eng. Des. 70, 13 (2004).  https://doi.org/10.1016/j.fusengdes.2003.08.002 Google Scholar
  56. 56.
    V.P. Pastukhov, Nucl. Fusion 14, 3 (1974).  https://doi.org/10.1088/0029-5515/14/1/001 Google Scholar
  57. 57.
    I.K. Konkashbaev, I.S. Landman, F.R. Ulinich, Sov. Phys. JETP 47, 501 (1978)ADSGoogle Scholar
  58. 58.
    D.D. Ryutov, Fusion Sci. Technol. 47(No. 1T), 148 (2005).  https://doi.org/10.13182/FST05-A627 Google Scholar
  59. 59.
    E. Soldatkina, M. Anikeev, P. Bagryansky, M. Korzhavina, V. Maximov, V. Savkin, D. Yakovlev, P. Yushmanov, A. Dunaevsky, Phys. Plasmas 24, 022505 (2017).  https://doi.org/10.1063/1.4976548 ADSGoogle Scholar
  60. 60.
    A.V. Anikeev, P.A. Bagryansky, G.I. Kuznetsov, N.V. Stupishin, Plasma Phys. Rep. 25, 775 (1999)ADSGoogle Scholar
  61. 61.
    G.I. Budker, V.V. Mirnov, D.D. Ryutov, JETP Lett. 14, 212 (1971)ADSGoogle Scholar
  62. 62.
    B.G. Logan, A.J. Lichtenberg, M.A. Lieberman, A. Makhijani, Phys. Rev. Lett. 28, 144 (1972).  https://doi.org/10.1103/PhysRevLett.28.144 ADSGoogle Scholar
  63. 63.
    V.V. Mirnov, D.D. Ryutov, Nucl. Fusion 12, 627 (1972).  https://doi.org/10.1088/0029-5515/12/6/001 Google Scholar
  64. 64.
    V.V. Mirnov, A.J. Lichtenberg, in: Reviews of Plasma Physics, Vol. 19, ed. by B.B. Kadomtsev (Consultants Bureau, New York, 1996) p. 53Google Scholar
  65. 65.
    I.A. Kotelnikov, Fusion Sci. Technol. 51(2), 186 (2007).  https://doi.org/10.13182/FST07-A1346 Google Scholar
  66. 66.
    B.G. Logan, I.G. Brown, A.J. Lichtenberg, M.A. Lieberman, Phys. Fluids 17, 1302 (1974).  https://doi.org/10.1063/1.1694882 ADSGoogle Scholar
  67. 67.
    M.V. Krivosheev, A.V. Komin, N. Krylov, E.V. Seko, B.A. Knyazev, D.D. Ryutov, Probl. Atomic Sci. Technol. Ser. Thermonuclear Fusion (No 2) 12 (1982)—in Russian Google Scholar
  68. 68.
    B.G. Logan, I.G. Brown, M.A. Lieberman, A.J. Lichtenberg, Phys. Rev. Lett. 29, 1435 (1972).  https://doi.org/10.1103/PhysRevLett.29.1435 ADSGoogle Scholar
  69. 69.
    G.I. Budker, V.V. Danilov, E.P. Kruglyakov, D.D. Ryutov, E.V. Shunko, JETP Lett. 17, 81 (1973)ADSGoogle Scholar
  70. 70.
    M. Tuszewski, D. Price, M.A. Lieberman, R. Bravenec, K. Doniger, C. Hartman, A.J. Lichtenberg, Nucl. Fusion 19, 1244 (1979).  https://doi.org/10.1088/0029-5515/19/9/009 ADSGoogle Scholar
  71. 71.
    A.V. Burdakov, V.V. Postupaev, Phys. Usp. (2018).  https://doi.org/10.3367/UFNe.2018.03.03834271 Google Scholar
  72. 72.
    A.V. Arzhannikov, A.V. Burdakov, V.A. Kapitonov, V.S. Koidan, V.V. Konyukhov, S.V. Lebedev, K.I. Mekler, V.S. Nikolaev, V.V. Postupaev, D.D. Ryutov, M.A. Shcheglov, S.L. Sinitskij, S.G. Voropaev, L.N. Vyacheslavov, Plasma Phys. Control. Fusion 30, 1571 (1988).  https://doi.org/10.1088/0741-3335/30/11/017 ADSGoogle Scholar
  73. 73.
    A.V. Arzhannikov, V.S. Nikolaev, S.L. Sinitsky, A.V. Smirnov, M.V. Yushkov, R.P. Zotkin, J. Appl. Phys. 72, 1657 (1992).  https://doi.org/10.1063/1.351687 ADSGoogle Scholar
  74. 74.
    A.V. Burdakov, V.S. Koidan, K.I. Mekler, S.V. Polosatkin, V.V. Postupaev, Plasma Phys. Rep. 40, 161 (2014).  https://doi.org/10.1134/S1063780X14030039 ADSGoogle Scholar
  75. 75.
    B.N. Breizman, in: Reviews of Plasma Physics, Vol. 15, ed. by B. B. Kadomtsev (Consultants Bureau, New York, 1990) p. 61Google Scholar
  76. 76.
    A.V. Burdakov, S.G. Voropaev, V.S. Koidan, S.V. Lebedev, K.I. Mekler, A.A. Nikiforov, V. Piffl, V.V. Postupaev, M.A. Shcheglov, Zh. Eksp. Teor. Fiz. 109 2078 (1996) [translated as A.V. Burdakov S.G. Voropaev, V.S. Koidan, S.V. Lebedev, K.I. Mekler, A.A. Nikiforov, V. Piffl, V.V. Postupaev, M.A. Shcheglov, J. Exp. Theor. Phys. 82, 1120 (1996)] http://jetp.ac.ru/cgi-bin/dn/e_082_06_1120.pdf
  77. 77.
    V.T. Astrelin, A.V. Burdakov, V.S. Koǐdan, K.I. Mekler, P.I. Mel’nikov, V.V. Postupaev, M.A. Shcheglov, J. Exp. Theor. Phys. 86, 489 (1998).  https://doi.org/10.1134/1.558494 ADSGoogle Scholar
  78. 78.
    M.A. Agafonov, A.V. Arzhannikov, V.T. Astrelin, V.B. Bobylev, A.V. Burdakov, M.N. Chagin, YuI Deulin, A.D. Khilchenko, V.V. Khilchenko, V.S. Koidan, V.V. Konyukhov, A.N. Kvashnin, O.A. Lee, A.G. Makarov, K.I. Mekler, P.I. Melnikov, V.S. Nikolaev, S.S. Perin, V.V. Postupaev, R.V. Razilov, A.F. Rovenskikh, E.P. Semenov, S.L. Sinitskij, A.V. Tarasov, K.V. Tsigutkin, L.V. Yushkina, R.P. Zotkin, Plasma Phys. Control. Fusion 38(No. 12A), A93 (1996).  https://doi.org/10.1088/0741-3335/38/12A/008 ADSGoogle Scholar
  79. 79.
    A.V. Arzhannikov, V.T. Astrelin, A.V. Burdakov, I.A. Ivanov, V.S. Koidan, S.A. Kuznetsov, V.V. Konyukhov, A.G. Makarov, K.I. Mekler, V.S. Nikolaev, S.A. Novozhilov, S.S. Perin, S.V. Polosatkin, V.V. Postupaev, A.F. Rovenskikh, A.V. Savchkov, S.L. Sinitsky, Fusion Technol. 39(No. 1T), 17 (2001).  https://doi.org/10.13182/FST01-A11963410 Google Scholar
  80. 80.
    V.V. Postupaev, A.V. Arzhannikov, V.T. Astrelin, V.V. Belykh, A.V. Burdakov, V.S. Burmasov, I.A. Ivanov, M.V. Ivantsivskiy, M.V. Kolosov, A.S. Krygina, K.N. Kuklin, K.I. Mekler, S.V. Polosatkin, S.S. Popov, A.F. Rovenskikh, A.A. Shoshin, S.L. Sinitsky, YuS Suliaev, YuA Trunyov, L.N. Vyacheslavov, Ed.R. Zubairov, Fusion Sci. Technol. 55(No. 2T), 144 (2009).  https://doi.org/10.13182/FST09-A7001 Google Scholar
  81. 81.
    V.T. Astrelin, A.V. Burdakov, V.V. Postupaev, Plasma Phys. Rep. 24, 414 (1998)ADSGoogle Scholar
  82. 82.
    A.V. Arzhannikov, V.T. Astrelin, A.V. Burdakov, I.A. Ivanov, V.S. Koǐdan, K.I. Mekler, V.V. Postupaev, A.F. Rovenskikh, S.V. Polosatkin, S.L. Sinitskiǐ, JETP Lett. 77, 358 (2003).  https://doi.org/10.1134/1.1581960 ADSGoogle Scholar
  83. 83.
    V.S. Koidan, R.Y. Akentjev, A.V. Arzhannikov, V.T. Astrelin, A.V. Burdakov, I.A. Ivanov, M.V. Ivantsivsky, V.V. Konyukhov, A.G. Makarov, K.I. Mekler, S.S. Perin, S.V. Polosatkin, V.V. Postupaev, A.F. Rovenskikh, S.L. Sinitsky, V.D. Stepanov, YuS Sulyaev, A.A. Shoshin, EhR Zubairov, Fusion Sci. Technol. 43(No. 1T), 30 (2003).  https://doi.org/10.13182/FST03-A11963559 Google Scholar
  84. 84.
    A.V. Arzhannikov, V.T. Astrelin, A.V. Burdakov, I.A. Ivanov, V.S. Koidan, K.I. Mekler, S.V. Polosatkin, V.V. Postupaev, A.F. Rovenskikh, S.L. Sinitsky, Fusion Sci. Technol. 43(No. 1T), 172 (2003).  https://doi.org/10.13182/FST03-A11963587 Google Scholar
  85. 85.
    I.A. Ivanov, A.V. Arzhannikov, V.T. Astrelin, A.V. Burdakov, V.S. Koidan, K.I. Mekler, S.V. Polosatkin, V.V. Postupaev, A.F. Rovenskikh, S.L. Sinitsky, Fusion Sci. Technol. 47(No. 1T), 171 (2005).  https://doi.org/10.13182/FST05-A632 Google Scholar
  86. 86.
    A.V. Arzhannikov, V.T. Astrelin, A.V. Burdakov, I.A. Ivanov, V.S. Koǐdan, S.A. Kuznetsov, K.I. Mekler, S.V. Polosatkin, V.V. Postupaev, A.F. Rovenskikh, S.L. Sinitskii, YuS Sulyaev, A.A. Shoshin, Plasma Phys. Rep. 31, 462 (2005).  https://doi.org/10.1134/1.1947331 ADSGoogle Scholar
  87. 87.
    A.V. Burdakov, A.C. England, C.S. Kim, V.S. Koidan, M. Kwon, V.V. Postupaev, A.F. Rovenskikh, YuS Sulyaev, Fusion Sci. Technol. 47(No. 1T), 333 (2005).  https://doi.org/10.13182/FST05-A681 Google Scholar
  88. 88.
    A.V. Arzhannikov, A.M. Batrakov, A.V. Burdakov, I.A. Ivanov, K.I. Mekler, V.V. Postupaev, A.F. Rovenskikh, S.V. Polosatkin, V.Ya. Sazanskii, S.L. Sinitskii, YuS Sulyaev, Plasma Phys. Rep. 32, 94 (2006).  https://doi.org/10.1134/S1063780X06020024 ADSGoogle Scholar
  89. 89.
    V.S. Koidan, A.V. Arzhannikov, V.T. Astrelin, A.V. Burdakov, G.E. Derevyankin, V.G. Ivanenko, I.A. Ivanov, M.V. Ivantsivsky, V.V. Konyukhov, S.A. Kuznetsov, A.G. Makarov, K.I. Mekler, V.S. Nikolaev, S.V. Polosatkin, V.V. Postupaev, A.F. Rovenskikh, A.A. Shoshin, S.L. Sinitsky, YuS Sulyaev, EhR Zubairov, Fusion Sci. Technol. 47(No. 1T), 35 (2005).  https://doi.org/10.13182/FST05-A605 Google Scholar
  90. 90.
    V.V. Postupaev, A.V. Arzhannikov, V.T. Astrelin, A.D. Beklemishev, A.V. Burdakov, V.S. Burmasov, I.A. Ivanov, M.V. Ivantsivskiy, K.N. Kuklin, K.I. Mekler, S.V. Polosatkin, S.S. Popov, A.F. Rovenskikh, A.A. Shoshin, N.V. Sorokina, S.L. Sinitsky, YuS Suliaev, L.N. Vyacheslavov, Ed.R. Zubairov, Fusion Sci. Technol. 55(No. 2T), 147 (2009).  https://doi.org/10.13182/FST09-A7002 Google Scholar
  91. 91.
    A.D. Beklemishev, Fusion Sci. Technol. 51(No. 2T), 180 (2007).  https://doi.org/10.13182/FST07-A1344 Google Scholar
  92. 92.
    V.V. Postupaev, A.V. Arzhannikov, V.T. Astrelin, A.M. Averkov, A.D. Beklemishev, A.V. Burdakov, I.A. Ivanov, V.S. Koidan, K.I. Mekler, S.V. Polosatkin, A.F. Rovenskikh, S.L. Sinitsky, EhR Zubairov, Fusion Sci. Technol. 47(No. 1T), 84 (2005).  https://doi.org/10.13182/FST05-A613 Google Scholar
  93. 93.
    I.A. Ivanov, A.V. Burdakov, V.G. Ivanenko, M.A. Makarov, K.I. Mekler, S.V. Polosatkin, V.V. Postupaev, A.F. Rovenskikh, S.L. Sinitsky, A.V. Sudnikov, A.A. Shoshin, I.M. Shchudlo, Fusion Sci. Technol. 59(No. 1T), 196 (2011).  https://doi.org/10.13182/FST11-A11607 Google Scholar
  94. 94.
    A.V. Burdakov, V.V. Postupaev, A.V. Sudnikov, Phys. Plasmas 21, 052507 (2014).  https://doi.org/10.1063/1.4876745 ADSGoogle Scholar
  95. 95.
    A. Arzhannikov, V. Astrelin, V. Batkin, V. Burmasov, G. Derevjankin, V. Ivanenko, I. Ivanov, M. Ivantsivskiy, I. Kandaurov, V. Konyukhov, K. Kuklin, S. Kuznetsov, A. Makarov, M. Makarov, K. Mekler, S. Polosatkin, S. Popov, V. Postupaev, A. Rovenskikh, A. Shoshin, S. Sinitsky, V. Stepanov, Yu. Sulyaev, Yu. Trunyov, L. Vyacheslavov, Eh Zubairov, Fusion Sci. Technol. 55(No. 2T), 63 (2009).  https://doi.org/10.13182/FST09-A6984 Google Scholar
  96. 96.
    A.V. Burdakov, A.V. Arzhannikov, V.T. Astrelin, A.D. Beklemishev, A.A. Ivanov, I.A. Kotelnikov, E.P. Kruglyakov, S.V. Polosatkin, V.V. Postupaev, S.L. Sinitsky, I.V. Timofeev, V.P. Zhukov, Fusion Sci. Technol. 59(No. 1T), 9 (2011).  https://doi.org/10.13182/FST11-A11564 Google Scholar
  97. 97.
    A.J. Lichtenberg, M.A. Lieberman, Nucl. Fusion 16, 532 (1976).  https://doi.org/10.1088/0029-5515/16/3/020 ADSGoogle Scholar
  98. 98.
    B.A. Knyazev, P.Z. Chebotaev, Nucl. Fusion 24, 555 (1984).  https://doi.org/10.1088/0029-5515/24/5/003 Google Scholar
  99. 99.
    V.V. Postupaev, A.V. Arzhannikov, V.T. Astrelin, V.I. Batkin, A.V. Burdakov, V.S. Burmasov, I.A. Ivanov, M.V. Ivantsivsky, K.N. Kuklin, S.A. Kuznetsov, M.A. Makarov, K.I. Mekler, S.V. Polosatkin, S.S. Popov, A.F. Rovenskikh, A.A. Shoshin, S.L. Sinitsky, V.F. Sklyarov, N.V. Sorokina, A.V. Sudnikov, YuS Sulyaev, L.N. Vyacheslavov, Fusion Sci. Technol. 59(No. 1T), 144 (2011).  https://doi.org/10.13182/FST11-A11594 Google Scholar
  100. 100.
    A.V. Burdakov, A.P. Avrorov, A.V. Arzhannikov, V.T. Astrelin, V.I. Batkin, A.D. Beklemishev, V.S. Burmasov, P.V. Bykov, G.E. Derevyankin, V.G. Ivanenko, I.A. Ivanov, M.V. Ivantsivsky, I.V. Kandaurov, A.A. Kasatov, S.A. Kuznetsov, V.V. Kurkuchekov, K.N. Kuklin, K.I. Mekler, S.V. Polosatkin, S.S. Popov, V.V. Postupaev, A.F. Rovenskikh, A.A. Shoshin, S.L. Sinitsky, V.F. Sklyarov, N.V. Sorokina, V.D. Stepanov, A.V. Sudnikov, YuS Sulyaev, I.V. Timofeev, YuA Trunev, L.N. Vyacheslavov, Fusion Sci. Technol. 63(No. 1T), 29 (2013).  https://doi.org/10.13182/FST13-A16869 Google Scholar
  101. 101.
    V.V. Postupaev, A.V. Burdakov, A.A. Ivanov, Fusion Sci. Technol. 68, 92 (2015).  https://doi.org/10.13182/FST14-846 Google Scholar
  102. 102.
    V.V. Postupaev, D.V. Yurov, Plasma Phys. Rep. 42, 1013 (2016).  https://doi.org/10.1134/S1063780X16110076 ADSGoogle Scholar
  103. 103.
    V.V. Postupaev, V.I. Batkin, A.D. Beklemishev, A.V. Burdakov, V.S. Burmasov, I.S. Chernoshtanov, A.I. Gorbovsky, I.A. Ivanov, K.N. Kuklin, K.I. Mekler, A.F. Rovenskikh, E.N. Sidorov, D.V. Yurov, Nucl. Fusion 57, 036012 (2017).  https://doi.org/10.1088/1741-4326/57/3/036012 ADSGoogle Scholar
  104. 104.
    V.I. Batkin, V.B. Bobylev, A.V. Burdakov, V.I. Davydenko, A.A. Ivanov, V.A. Kapitonov, K.I. Mekler, S.V. Polosatkin, V.V. Postupaev, A.F. Rovenskikh, N.V. Sorokina, YuS Sulyaev, YuA Trunev, Fusion Sci. Technol. 59(No. 1T), 262 (2011).  https://doi.org/10.13182/FST11-A11629 Google Scholar
  105. 105.
    G.I. Budker, V.V. Mirnov, D.D. Ryutov, in: Proceedings of International Conference on Plasma Theory (Institute of Theoretical Physics, Kiev, 1971), p. 154Google Scholar
  106. 106.
    J.L. Tuck, in: Proceedings of the High-Beta Workshop (Los Alamos Scientific Laboratory, Los Alamos, NM, July 28-August 1, 1975), p. 808Google Scholar
  107. 107.
    A.D. Beklemishev, AIP Conf. Proc. 1771, 040006 (2016).  https://doi.org/10.1063/1.4964191 Google Scholar
  108. 108.
    V.V. Postupaev, A.V. Sudnikov, A.D. Beklemishev, I.A. Ivanov, Fusion Eng. Des. 106, 29 (2016).  https://doi.org/10.1016/j.fusengdes.2016.03.029 Google Scholar
  109. 109.
    A.V. Sudnikov, A.D. Beklemishev, V.V. Postupaev, A.V. Burdakov, I.A. Ivanov, N.G. Vasilyeva, K.N. Kuklin, E.N. Sidorov, Fusion Eng. Des. 122, 86 (2017).  https://doi.org/10.1016/j.fusengdes.2017.09.005 Google Scholar
  110. 110.
    P.A. Bagryansky, T.D. Akhmetov, I.S. Chernoshtanov, P.P. Deichuli, A.A. Ivanov, A.A. Lizunov, V.V. Maximov, V.V. Mishagin, S.V. Murakhtin, E.I. Pinzhenin, V.V. Pikhodko, A.V. Sorokin, V.V. Oreshonok, AIP Conf. Proc. 1771, 030015 (2016).  https://doi.org/10.1063/1.4964171 Google Scholar
  111. 111.
    J. Park, N.A. Krall, P.E. Sieck, D.T. Offermann, M. Skillicorn, A. Sanchez, K. Davis, E. Alderson, G. Lapenta, Phys. Rev. X 5, 021024 (2015).  https://doi.org/10.1103/PhysRevX.5.021024 Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • P. A. Bagryansky
    • 1
    Email author
  • A. D. Beklemishev
    • 1
    • 2
  • V. V. Postupaev
    • 1
    • 2
  1. 1.Budker Institute of Nuclear Physics Siberian Branch Russian Academy of SciencesNovosibirskRussian Federation
  2. 2.Novosibirsk State UniversityNovosibirskRussian Federation

Personalised recommendations