Advertisement

Journal of Fusion Energy

, Volume 38, Issue 1, pp 125–137 | Cite as

Current Progress of Tritium Fuel Cycle Technology for CFETR

  • Xiaolin WangEmail author
  • Guangming Ran
  • Heyi Wang
  • Chengjian Xiao
  • Guikai Zhang
  • Chang’an Chen
Original Research
  • 162 Downloads

Abstract

Tritium fuel cycle technology is crucial for the successful development of China fusion engineering test reactor (CFETR) which aims to bridge the gap between a fusion experimental reactor (ITER) and a demonstration reactor. One of the major missions of CFETR is to realize tritium fuel self-sufficiency with a tritium breeding ratio over 1.0. In order to attain tritium self-sufficiency as well as ensure safe handling of tritium, it is important to establish a closed tritium fuel cycle. Therefore, a tritium plant which consists of various tritium processing systems and tritium safety systems is indispensable for the successful operation of CFETR. Since the mid-2000s, when China joined the ITER project, a series of R&D activities on tritium fuel cycle technology have been carried out. The current progress in terms of conceptual design of tritium plant, development of sub-system technologies and tritium related materials is presented in this paper.

Keywords

CFETR Tritium fuel cycle Self-sufficiency Tritium plant 

Abbreviations

ACS

Analytical and control system

ADS

Air detritiation system

ANS

Analytical system

CECE

Combined electrolysis catalytic exchange

CD

Cryogenic distillation

CDM

Catalytic decomposition of methane

CFETR

China fusion engineering test reactor

CMRR

China Mianyang research reactor

CPC

Concentration polarization coefficient

DEMO

Demonstration reactor

DF

Duty factor

DS

Detritiation system

ECA

Electrochemical plating of Al

EMIC

1-Ethyl-3-methylimidazolium chloride

FDC

Frontal displacement chromatography

GC

Gas chromatography

GDS

Glove box detritiation system

HCCB

Helium cooled ceramic breeder

HCS

Helium coolant system

HEP

Height equilibrium plate

IC

Ionization chamber

ISS

Isotope separation system

ITER

International thermonuclear experimental reactor

JAERI

Japan atomic energy research institute

KIT

Karlsruhe institute of technology

LANL

Los Alamos national laboratory

MFE

Magnetic-confinement fusion energy

MS

Mass spectroscopy

REP

Rotating-electrode process

SDS

Storage and delivery system

TBM

Test blanket module

TBR

Tritium breeding ratio

TCAP

Thermal cycling absorption process

TD

Theoretical density

TDS

Thermal-desorption spectroscopy

TEP

Tokamak exhaust processing system

TES

Tritium extraction system

TLK

Tritium laboratory Karlsruhe

TMS

Tritium measurement system

TPB

Tritium permeation barrier

TSTA

Tritium systems test assembly

U

Uranium

VDS

Vent detritiation system

WD

Water distillation

WDS

Water detritiation system

Zr–Co

Zirconium–cobalt alloy

Notes

Acknowledgements

This work was supported by the National Magnetic Confinement Fusion Science Program of China (No. 2017YFE0300300).

References

  1. 1.
    J.R. Bartlit, The tritium systems test assembly at Los Alamos national laboratory. Fusion Eng. Des. 12, 393–402 (1990)CrossRefGoogle Scholar
  2. 2.
    Y. Naruse, Y. Matsuda, K. Tanaka, S. Konishi, The TPL Operation Group, Commissioning of the tritium process laboratory at JAERI. Fusion Eng. Des. 10, 197–202 (1989)CrossRefGoogle Scholar
  3. 3.
    J.L. Anderson, J.R. Bartlit, R.V. Carlson, D.O. Coffin, F.A. Damiano, R.H. Sherman, R.S. Willms, Experience of TSTA milestone runs with 100 grams-level of tritium. Fusion Technol. 14, 438–443 (1988)CrossRefGoogle Scholar
  4. 4.
    R.-D. Penzhorn, N. Bekris, P. Coad, L. Dorr, M. Friedrich, M. Glugla, A. Haigh, R. Lasser, A. Peacock, Status and research progress at the tritium laboratory Karlsruhe. Fusion Eng. Des. 49–50, 753–767 (2000)CrossRefGoogle Scholar
  5. 5.
    Y.X. Wan, J.G. Li, Y. Liu, X.L. Wang, V. Chan, C.A. Chen, X.R. Duan, P. Fu, X. Gao, K.M. Feng, S.L. Liu, Y.T. Song, P.D. Weng, B.N. Wan, F.R. Wan, H.Y. Wang, S.T. Wu, M.Y. Ye, Q.W. Yang, G.Y. Zheng, G. Zhuang, Q. Li and CFETR team, Overview of the present progress and activities on the CFETR. Nucl. Fusion 57, 102009 (2017)ADSCrossRefGoogle Scholar
  6. 6.
    M. Glugla, A. Antipenkov, S. Beloglazov, C. Caldwell-Nichols, I.R. Cristescu, I. Cristescu, C. Day, L. Doerr, J.-P. Girard, E. Tada, The ITER tritium system. Fusion Eng. Des. 82, 472–487 (2007)CrossRefGoogle Scholar
  7. 7.
    D.L. Luo, C.A. Chen, Z.Y. Huang, C.X. Liu, Y.F. Xiong, Y. Shi, Q.H. Lei, G. Hu, Design of tritium systems for CH HCSB TBM. Nucl. Fusion Plasma Phys. 26, 217–222 (2006). (in Chinese) Google Scholar
  8. 8.
    C.P.C. Wong, B. Merrill, Use of system code to estimate equilibrium tritium inventory in fusion DT machines, such as ARIES-AT and components testing facilities. Fusion Eng. Des. 89, 1428–1485 (2014)CrossRefGoogle Scholar
  9. 9.
    J.G. Li, CFETR and requirement and challenge for tritium science and technology, internal report, 2017. (in Chinese) Google Scholar
  10. 10.
    H.Y. Wang, Progress of D–T fuel recycling and tritium safety system for CFETR, in The 12th International Symposium on Fusion Nuclear Technology (ISFNT-12), Jeju Island, South Korea, 14–18 September 2015Google Scholar
  11. 11.
    J.W. Hou, S.M. Peng, S. Hu, L.P. Xiong, Y. Gong, Concentration polarization in Pd-based membrane for the separation of H2/He. High Power Laser Part. Beams 27, 016015 (2015). (in Chinese) CrossRefGoogle Scholar
  12. 12.
    J.M. Li, C. Xiao, L.P. Xiong, X.J. Chen, L.J. Zhao, L. Dong, Y. Du, Y. Yang, H.Y. Wang, S.M. Peng, Hydrogen production by methane decomposition over Ni–Cu–SiO2 catalysts: effect of temperature on catalyst deactivation. RSC Adv. 6, 52154 (2016)CrossRefGoogle Scholar
  13. 13.
    J.M. Li, L. Dong, L.P. Xiong, Y. Yang, Y. Du, L.J. Zhao, H.Y. Wang, S.M. Peng, High-loaded Ni–Cu–SiO2 catalysts for methane decomposition to prepare hydrogen and carbon filaments. Int. J. Hydrog. Energy 41, 12038–12048 (2016)CrossRefGoogle Scholar
  14. 14.
    J.M. Li, L.J. Zhao, J.C. He, L. Dong, L.P. Xiong, Y. Du, Y. Yang, H.Y. Wang, S.M. Peng, Methane decomposition over high-loaded Ni–Cu–SiO2 catalysts. Fusion Eng. Des. 113, 279–283 (2016)CrossRefGoogle Scholar
  15. 15.
    J.M. Li, Y. Gong, C. Chen, J.W. Hou, L. Yue, X.L. Fu, L.J. Zhao, H.L. Chen, H.Y. Wang, S.M. Peng, Evolution of the Ni–Cu–SiO2 catalyst for methane decomposition to prepare hydrogen. Fusion Eng. Des. 125, 593–602 (2017)CrossRefGoogle Scholar
  16. 16.
    X.L. Xia, A dynamic simulation of D2/DT separation by cryogenic distillation. Nucl. Tech. 30, 294–296 (2007). (in Chinese) Google Scholar
  17. 17.
    X.L. Xia, Theoretical analysis of H2/HD/HT separation performance by electrolysis–distillation process. J. Chem. Ind. Eng. 60, 1725–1729 (2009). (in Chinese) Google Scholar
  18. 18.
    X.L. Xia, L.P. Xiong, Theoretical study on separation of H2/HD by multi-column interlinking cryogenic distillation. At. Energy Sci. Technol. 45, 407–411 (2011). (in Chinese) Google Scholar
  19. 19.
    X.L. Xia, X.B. Ren, M. Gu, Y.M. Luo, Z.H. Fu, Y.L. Liu, J. Liu, B. Xie, K.P. Weng, Separation performance of H2/HD by cryogenic distillation. J. Nucl. Radiochem. 30, 108–111 (2008). (in Chinese) Google Scholar
  20. 20.
    X.L. Xia, H.Y. Wang, Y.M. Luo, X.B. Ren, Z.H. Fu, Y.L. Liu, J. Liu, M. Gu, B. Xie, K.P. Weng, Hydrogen isotopes separation by cryogenic distillation under total reflux mode. At. Energy Sci. Technol. 42, 314–317 (2008). (in Chinese) Google Scholar
  21. 21.
    G.Q. Huang, D.L. Luo, Q.H. Lei, Q.S. Liu, X. Xiang, X.J. Qian, C.A. Chen, Thermal cycling absorption process for hydrogen isotope separation and its preliminary separation performance. Chem. Eng. (China) 38, 215–228 (2010). (in Chinese) Google Scholar
  22. 22.
    X.J. Deng, D.L. Luo, C. Qin, X.J. Qian, W. Yang, Hydrogen isotopes separation using frontal displacement chromatography with Pd–Al2O3 packed column. Int. J. Hydrog. Energy 37, 10774–10778 (2012)CrossRefGoogle Scholar
  23. 23.
    D.L. Luo, G.Q. Huang, Z.Y. Huang, C. Qin, J.F. Song, K.H. He, C.A. Chen, G.K. Zhang, J. Fu, Y. Yao, Y.T. An, Recent progress of China HCCB TBM tritium system. Fusion Eng. Des. 109–111, 416–421 (2016)CrossRefGoogle Scholar
  24. 24.
    K.M. Feng, G.S. Zhang, G. Hu, Y.J. Chen, Y.J. Feng, Z.X. Li, P.H. Wang, Z. Zhao, X.F. Ye, B. Xiang, L. Zhang, Q.J. Wang, Q.X. Cao, F.C. Zhao, F. Wang, Y. Liu, M.C. Zhang, Chinese HCCB TBM team, New progress on design and R&D for solid breeder test blanket module in China. Fusion Eng. Des. 89, 1119–1125 (2014)CrossRefGoogle Scholar
  25. 25.
    D.L. Luo, J.F. Song, G.Q. Huang, C.A. Chen, Z.Y. Huang, X.J. Deng, C. Qin, X.J. Qian, G.K. Zhang, Progress of China’s TBM tritium technology. Fusion Eng. Des. 87, 1261–1267 (2012)CrossRefGoogle Scholar
  26. 26.
    Q.W. Wu, W.H. Luo, X.Y. Yan, J.W. Ba, Z.H. Zheng, Z.Y. Huang, J.C. Bao, D.L. Dai, D.Q. Meng, Preparation of multifunctional detritiation catalyst and design of detritiation reactor in fusion facility. Fusion Sci. Technol. (2017).  https://doi.org/10.1080/15361055.2017.1368335 Google Scholar
  27. 27.
    P. Chen, X.L. Fu, P. Hu, C.J. Xiao, X.B. Ren, X.L. Xia, H.Y. Wang, Analysis of hydrogen isotopes by gas chromatography using a MnCl2 coated γ-Al2O3 caillary packed column. Chin. J. Chromatogr. 35, 766–771 (2017). (in Chinese) CrossRefGoogle Scholar
  28. 28.
    D.W. Cao, S.M. Peng, X.J. Chen, J.W. Hou, P. Chen, C.J. Xiao, Y. Gong, H.Y. Wang, Analysis of hydrogen isotopes with quadrupole mass spectrometry. Anal. Methods 9, 3067–3072 (2017)CrossRefGoogle Scholar
  29. 29.
    Z.L. Chen, S.M. Peng, D. Meng, Y.H. He, H.Y. Wang, Theoretical study of energy deposition in ionization chambers for tritium measurements. Rev. Sci. Instrum. 84, 103302 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    Z.L. Chen, S.M. Peng, D. Meng, Y.H. He, H.Y. Wang, Monte Carlo calculation of energy deposition in ionization chambers for tritium measurement. Nucl. Instrum. Methods Phys. Res. A 762, 7–10 (2014)CrossRefGoogle Scholar
  31. 31.
    Z.L. Chen, S.M. Peng, S.H. Cheng, Z.Y. Tan, H.Y. Wang, M. Masao, Analysis of ion recombination in ionization chambers for tritium measurements. Fusion Eng. Des. 101, 52–55 (2015)CrossRefGoogle Scholar
  32. 32.
    Z.L. Chen, S.M. Peng, H. Chen, R.M. Chang, D. Meng, L. Mu, Development of a novel system for monitoring tritium in gaseous form. Nucl. Sci. Tech. 26, 020602 (2015)Google Scholar
  33. 33.
    Z.L. Chen, S.M. Peng, Y.H. He, D. Meng, H.Y. Wang, Theoretical study of Jesse effect in tritium measurements using ionization chambers. Nucl. Instrum. Methods Phys. Res. A 806, 267–270 (2016)ADSCrossRefGoogle Scholar
  34. 34.
    Y.F. Guo, Z.Z. Liu, X.M. Ji, X.C. Guo, Q. Zhan, W.W. Zhao, H.G. Yang, On-line measurement of tritium partial pressure in gas containing tritium by β-ray induced X-ray. At. Energy Sci. Technol. 50, 363–368 (2016). (in Chinese) Google Scholar
  35. 35.
    C.S. He, X.L. Chen, H.G. Yang, absolute measurement of micro-calorimeter for low activity tritium. J. Nucl. Radiochem. 38, 47–51 (2016). (in Chinese) Google Scholar
  36. 36.
    D.Q. Zhu, S.M. Peng, X.J. Chen, X.L. Gao, T.Z. Yang, Fabrication and characterization of Li3TaO4 ceramic pebbles by wet process. J. Nucl. Mater. 396, 245–250 (2010)ADSCrossRefGoogle Scholar
  37. 37.
    X.L. Gao, X.J. Chen, M. Gu, C.J. Xiao, S.M. Peng, Fabrication and characterization of Li4SiO4 ceramic pebbles by wet method. J. Nucl. Mater. 424, 210–215 (2012)ADSCrossRefGoogle Scholar
  38. 38.
    R. Knitter, B. Alm, G. Roth, Crystallisation and microstructure of lithium orthosilicate pebbles. J. Nucl. Mater. 367–370, 1387–1392 (2007)CrossRefGoogle Scholar
  39. 39.
    G.M. Ran, C.J. Xiao, X.J. Chen, Y. Gong, L.J. Zhao, H.Y. Wang, X.L. Wang, Tritium release behavior of Li4SiO4 pebbles with high densities and large grain sizes. J. Nucl. Mater. 492, 189–194 (2017)ADSCrossRefGoogle Scholar
  40. 40.
    L.J. Zhao, X.G. Long, X.J. Chen, C.J. Xiao, Y. Gong, Q.S. Guan, J.M. Li, L. Xie, X.P. Chen, S.M. Peng, Design, synthesis and characterization of the advanced tritium breeder: Li4+xSi1−xAlxO4 ceramics. J. Nucl. Mater. 467, 911–916 (2015)ADSCrossRefGoogle Scholar
  41. 41.
    C.M. Kang, X.L. Wang, C.J. Xiao, X.L. Gao, M. Gu, J. Liu, H.Y. Wang, S.M. Peng, X.J. Chen, Out-of-pile tritium release study on Li4SiO4 pebbles from TRINPC-I experiments. J. Nucl. Mater. 412, 62–65 (2011)ADSCrossRefGoogle Scholar
  42. 42.
    C.J. Xiao, X.L. Gao, M. Kobayashi, K. Kawasaki, H. Uchimura, K. Toda, C.M. Kang, X.J. Chen, H.Y. Wang, S.M. Peng, X.L. Wang, Y. Oya, K. Okuno, Tritium release kinetics in lithium orthosilicate ceramic pebbles irradiated with low thermal-neutron fluence. J. Nucl. Mater. 438, 46–50 (2013)ADSCrossRefGoogle Scholar
  43. 43.
    C.M. Kang, C.J. Xiao, X.L. Wang, Y.H. He, J. Liu, X.J. Chen, S.M. Peng, H.Y. Wang, Effect of water adsorption on tritium release from Li4SiO4. J. Nucl. Mater. 432, 455–459 (2013)ADSCrossRefGoogle Scholar
  44. 44.
    C.M. Kang, X.L. Wang, C.J. Xiao, Y.H. He, X.J. Chen, J. Liu, H.Y. Wang, S.M. Peng, Tritium release experiments on Li4SiO4 pebbles from TRINPC-I experiments: effects of water adsorption and hydrogen gas. Fusion Eng. Des. 88, 113–117 (2013)CrossRefGoogle Scholar
  45. 45.
    C.M. Kang, C.J. Xiao, X.J. Chen, S.M. Peng, X.L. Wang, Competition of surface reactions of tritium release from irradiated Li4SiO4 pebbles. Sci. China Chem. 58, 839–844 (2015)CrossRefGoogle Scholar
  46. 46.
    G.M. Ran, C.J. Xiao, X.J. Chen, Y. Gong, C.M. Kang, X.L. Wang, Correlation between the processes of water desorption and tritium release from Li4SiO4 ceramic pebbles. J. Nucl. Mater. 466, 316–321 (2015)ADSCrossRefGoogle Scholar
  47. 47.
    G.M. Ran, C.J. Xiao, X.J. Chen, Y. Gong, L.J. Zhao, X.L. Wang, Tritium release from Li4SiO4 ceramic pebbles in high magnetic field. Fusion Eng. Des. 101, 124–127 (2015)CrossRefGoogle Scholar
  48. 48.
    C.J. Xiao, X.J. Chen, Y. Gong, H.W. Huang, G.M. Ran, L.J. Zhao, P. Chen, Q.Y. Zhang, Out-of-pile tritium release of LiAlO2 pebble. High Power Laser Part. Beams 27, 016005 (2015). (in Chinese) CrossRefGoogle Scholar
  49. 49.
    G.M. Ran, C.J. Xiao, X.J. Chen, Y. Gong, L.J. Zhao, H.Y. Wang, X.L. Wang, Annihilation behavior of irradiation defects in Li4SiO4 irradiated with high thermal neutron fluence. J. Nucl. Mater. 491, 43–47 (2017)ADSCrossRefGoogle Scholar
  50. 50.
    H. Zhang, Research on the gas flow and thermo-mechanical behaviors in Li4SiO4 pebble bed, Ph.D. thesis, University of Science and Technology of China, 2017Google Scholar
  51. 51.
    Y.J. Feng, K.M. Feng, J.L. Zhang, Study on REP method for fabrication neutron multiplier beryllium pebbles. Prog. Rep. China Nucl. Sci. Technol. 2, 82–87 (2011). (in Chinese) Google Scholar
  52. 52.
    K.M. Feng, X.Y. Wang, Y.J. Feng, Y.J. Chen, Z. Zhao, Z.X. Li, P.H. Wang, Q.J. Wang, X.F. Ye, F.C. Zhao, L. Zhang, F. Wang, Q.X. Chao, X.H. Wu, Y.L. Wang, J. Wang, Y. Liu, L. Yang, Y.F. Chen, G. Yu, J. Liu, X.Y. Wang, M.C. Zhang, B.P. Gong, G.S. Zhang, G. Hu, B. Zhou, H.B. Liao, M. Bai, C.H. Pan, X.R. Duan, C. Xing, Chinese HCCBTBM team, current progress of Chinese HCCB TBM program. Fusion Eng. Des. 109–111, 729–735 (2016)CrossRefGoogle Scholar
  53. 53.
    G.K. Zhang, J. Li, C.A. Chen, S.P. Dou, G.P. Ling, Tritium permeation barrier-aluminized coating prepared by Al-plating and oxidation process. J. Nucl. Mater. 417, 1245–1248 (2011)CrossRefGoogle Scholar
  54. 54.
    Y. Li, G.P. Ling, C.A. Chen, G.K. Zhang, Formation of aluminide coatings by low temperature heat treatment of Al coating electrodeposited from ionic liquid. J. Nucl. Mater. 412, 245–247 (2011)Google Scholar
  55. 55.
    X.X. Peng, G.K. Zhang, F.L. Yang, X. Xiang, L.Z. Luo, C.A. Chen, X.L. Wang, Fabrication and characterization of aluminide coating on V–5Cr–5Ti by electrodeposition and subsequent heat treating. Int. J. Hydrog. Energy 41, 8935–8945 (2016)CrossRefGoogle Scholar
  56. 56.
    D.P. Xue, Y.M. Chen, G.P. Ling, K.Z. Liu, C.A. Chen, G.K. Zhang, Preparation of aluminide coatings on the inner surface of tubes by heat treatment of Al coatings electrodeposited from an ionic liquid. Fusion Eng. Des. 101, 128–133 (2015)CrossRefGoogle Scholar
  57. 57.
    G.K. Zhang, J. Li, C.A. Chen, D.L. Luo, X.L. Wang, An advance process of aluminum rich coating as tritium permeation barrier on 321 steel workpiece. Fusion Eng. Des. 87, 1370–1375 (2012)CrossRefGoogle Scholar
  58. 58.
    F.L. Yang, G.D. Lu, X. Xiang, G.K. Zhang, T. Tang, Y. Shi, X.L. Wang, Tritium permeation characterization of Al2O3/FeAl coating as tritium permeation barrier on 321 steel container. J. Nucl. Mater. 478, 144–148 (2016)ADSCrossRefGoogle Scholar
  59. 59.
    G.K. Zhang, X.L. Wang, Y.F. Xiong, Y. Shi, J.F. Song, D.L. Luo, Mechanism for adsorption, dissociation and diffusion of hydrogen in hydrogen permeation barrier of α-Al2O3: a density functional theory study. Int. J. Hydrog. Energy 38, 1157–1165 (2013)CrossRefGoogle Scholar
  60. 60.
    G.K. Zhang, X.L. Wang, F.L. Yang, Y. Shi, J.F. Song, X.C. Lai, Energetics and diffusion of hydrogen in hydrogen permeation barrier of α-Al2O3/FeAl with two different interfaces. Int. J. Hydrog. Energy 38, 7550–7560 (2013)CrossRefGoogle Scholar
  61. 61.
    G.K. Zhang, S.P. Dou, Y.J. Lu, Y. Shi, X.C. Lai, X.L. Wang, Mechanisms for adsorption, dissociation and diffusion of hydrogen in hydrogen permeation barrier of α-Al2O3: the role of crystal orientation. Int. J. Hydrog. Energy 39, 610–619 (2014)CrossRefGoogle Scholar
  62. 62.
    G.K. Zhang, Y.J. Lu, X.L. Wang, Hydrogen interactions with intrinsic defects in hydrogen permeation barrier of α-Al2O3: a first-principles study. Phys. Chem. Chem. Phys. 16, 17523–17530 (2014)CrossRefGoogle Scholar
  63. 63.
    X. Xiang, G.K. Zhang, X.L. Wang, T. Tang, Y. Shi, A new perspective on the process of intrinsic point defects in α-Al2O3. Phys. Chem. Chem. Phys. 17, 29134–29144 (2015)CrossRefGoogle Scholar
  64. 64.
    G.K. Zhang, X. Xiang, F.L. Yang, X.X. Peng, T. Tang, Y. Shi, X.L. Wang, Helium stability and its interaction with H inα-Al2O3: a first-principles study. Phys. Chem. Chem. Phys. 18, 1649–1656 (2016)CrossRefGoogle Scholar
  65. 65.
    G.K. Zhang, X. Xiang, F.L. Yang, L. Liu, T. Tang, Y. Shi, X.L. Wang, First principles investigation of helium physisorption on α-Al2O3(001) surface. Phys. Chem. Chem. Phys. 18, 15711–15718 (2016)CrossRefGoogle Scholar
  66. 66.
    X. Xiang, G.K. Zhang, F.L. Yang, X.L. Wang, T. Tang, Y. Shi, Cr effect on hydrogen interactions with intrinsic point defects and hydrogen diffusion in α-Al2O3 as tritium permeation barriers. J. Phys. Chem. C 120, 9535–9544 (2016)CrossRefGoogle Scholar
  67. 67.
    X. Xiang, G.K. Zhang, F.L. Yang, X.X. Peng, T. Tang, Y. Shi, X.L. Wang, An insight to the role of Cr in the process of intrinsic point defects in α-Al2O3. Phys. Chem. Chem. Phys. 18, 1–8 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Xiaolin Wang
    • 1
    Email author
  • Guangming Ran
    • 2
  • Heyi Wang
    • 2
  • Chengjian Xiao
    • 2
  • Guikai Zhang
    • 3
  • Chang’an Chen
    • 3
  1. 1.China Academy of Engineering PhysicsMianyangChina
  2. 2.Institute of Nuclear Physics and ChemistryChina Academy of Engineering PhysicsMianyangChina
  3. 3.Institute of MaterialsChina Academy of Engineering PhysicsMianyangChina

Personalised recommendations