Journal of Fusion Energy

, Volume 37, Issue 2–3, pp 103–110 | Cite as

Physics Criteria for a Subscale Plasma Liner Experiment

  • Scott C. HsuEmail author
  • Y. C. Francis Thio
Original Research


Spherically imploding plasma liners, formed by merging hypersonic plasma jets, are a proposed standoff driver to compress magnetized target plasmas to fusion conditions (Hsu et al. in IEEE Trans Plasma Sci 40:1287, 2012). In this paper, the parameter space and physics criteria are identified for a subscale, plasma-liner-formation experiment to provide data, e.g., on liner ram-pressure scaling and uniformity, that are relevant for addressing scientific issues of full-scale plasma liners required to achieve fusion conditions. Based on these criteria, we quantitatively estimate the minimum liner kinetic energy and mass needed, which informed the design of a subscale plasma liner experiment now under development.


Plasma liners Plasma jets Magneto-inertial fusion 


  1. 1.
    S.C. Hsu, S.J. Langendorf, K.C. Yates, J.P. Dunn, S. Brockington, A. Case, E. Cruz, F.D. Witherspoon, M.A. Gilmore, J.T. Cassibry, R. Samulyak, P. Stoltz, K. Schillo, W. Shih, K. Beckwith, Y.C.F. Thio, IEEE Trans. Plasmas Sci. PP(99), 1 (2017). CrossRefGoogle Scholar
  2. 2.
    S.C. Hsu, E.C. Merritt, A.L. Moser, T.J. Awe, S.J.E. Brockington, J.S. Davis, C.S. Adams, A. Case, J.T. Cassibry, J.P. Dunn, M.A. Gilmore, A.G. Lynn, S.J. Messer, F.D. Witherspoon, Phys. Plasmas 19, 123514 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    S.C. Hsu, A.L. Moser, E.C. Merritt, C.S. Adams, J.P. Dunn, S. Brockington, A. Case, M. Gilmore, A.G. Lynn, S.J. Messer, F.D. Witherspoon, J. Plasmas Phys. 81, 345810201 (2015)CrossRefGoogle Scholar
  4. 4.
    J.J. Bertin, R.M. Cummings, Aerodynamics for Engineers, 6th edn. (Pearson, Upper Saddle River, 2013)Google Scholar
  5. 5.
    I.R. Lindemuth, R.C. Kirkpatrick, Nucl. Fusion 23, 263 (1983)CrossRefGoogle Scholar
  6. 6.
    R.C. Kirkpatrick, I.R. Lindemuth, M.S. Ward, Fusion Technol. 27, 201 (1995)CrossRefGoogle Scholar
  7. 7.
    I.R. Lindemuth, R.E. Siemon, Am. J. Phys. 77, 407 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    Y.C.F. Thio, E. Panarella, R.C. Kirkpatrick, C.E. Knapp, F. Wysocki, P. Parks, G. Schmidt, in Current Trends in International Fusion Research–Proceedings of the Second International Symposium, ed. by E. Panarella (NRC Canada, Ottawa, 1999), p. 113Google Scholar
  9. 9.
    Y.C.F. Thio, C.E. Knapp, R.C. Kirkpatrick, R.E. Siemon, P.J. Turchi, J. Fusion Energ. 20, 1 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    S.C. Hsu, T.J. Awe, S. Brockington, A. Case, J.T. Cassibry, G. Kagan, S.J. Messer, M. Stanic, X. Tang, D.R. Welch, F.D. Witherspoon, IEEE Trans. Plasmas Sci. 40, 1287 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    C.E. Knapp, R.C. Kirkpatrick, Phys. Plasmas 21, 070701 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    “Conceptual Cost Study for a Fusion Power Plant Based on Four Technologies from the DOE ARPA-E ALPHA Program,” Bechtel National, Inc., Report No. 26029-000-30R-G01G-00001 (2017)Google Scholar
  13. 13.
    P.B. Parks, Phys. Plasmas 15, 062506 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    R. Samulyak, P. Parks, L. Wu, Phys. Plasmas 17, 092702 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    T.J. Awe, C.S. Adams, J.S. Davis, D.S. Hanna, S.C. Hsu, J.T. Cassibry, Phys. Plasmas 18, 072705 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    J.S. Davis, S.C. Hsu, I.E. Golovkin, J.J. MacFarlane, J.T. Cassibry, Phys. Plasmas 19, 102701 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    J.T. Cassibry, M. Stanic, S.C. Hsu, F.D. Witherspoon, S.I. Abarzhi, Phys. Plasmas 19, 052702 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    H. Kim, R. Samulyak, L. Zhang, P. Parks, Phys. Plasmas 19, 082711 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    E.C. Merritt, A.L. Moser, S.C. Hsu, J. Loverich, M. Gilmore, Phys. Rev. Lett. 111, 085003 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    J.T. Cassibry, M. Stanic, S.C. Hsu, Phys. Plasmas 20, 032706 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    H. Kim, L. Zhang, R. Samulyak, P. Parks, Phys. Plasmas 20, 022704 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    E.C. Merritt, A.L. Moser, S.C. Hsu, C.S. Adams, J.P. Dunn, A. Miguel Holgado, M.A. Gilmore, Phys. Plasmas 21, 055703 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    S.J. Langendorf, S.C. Hsu, Phys. Plasmas 24, 032704 (2017)ADSCrossRefGoogle Scholar
  24. 24.
    D.D. Ryutov, Fusion Sci. Tech. 56, 1489 (2009)CrossRefGoogle Scholar
  25. 25.
    D.R. Welch, T.C. Genoni, C. Thoma, D.V. Rose, S.C. Hsu, Phys. Plasmas 21, 032704 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    R.P. Drake, High-Energy-Density-Physics (Springer, Berlin, 2010)Google Scholar
  27. 27.
    J.J. MacFarlane, I.E. Golovkin, P.R. Woodruff, J. Quant. Spect. Rad. Trans. 99, 381 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    Y.A. Zel’dovich, Y.P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic Press, New York, 1966)Google Scholar
  29. 29.
    G. Kagan, X. Tang, S.C. Hsu, T.J. Awe, Phys. Plasmas 18, 120702 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    F.D. Witherspoon, A. Case, S.J. Messer, R. Bomgardner II, M.W. Phillips, S. Brockington, R. Elton, Rev. Sci. Instrum. 80, 083506 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    A. Case, S. Brockington, E. Cruz, F.D. Witherspoon, Bull. Am. Phys. Soc. 62, 395 (2017)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Los Alamos National LaboratoryLos AlamosUSA
  2. 2.HyperJet Fusion CorporationChantillyUSA

Personalised recommendations