Advertisement

Journal of Fusion Energy

, Volume 34, Issue 6, pp 1246–1251 | Cite as

Effects of Nitrogen Concentration on Microstructure of Tungsten Coatings Synthesized by Plasma Sputtering Method

  • E. VassalloEmail author
  • G. Angella
  • R. Caniello
  • S. Deambrosis
  • F. Inzoli
  • E. Miorin
  • M. Pedroni
Original Research
  • 206 Downloads

Abstract

The use of nitrogen seeding to reduce the edge plasma temperature in tokamak raises concern regarding the possible formation of tungsten nitride layers with different properties (melting temperature, hardness, retention, etc.) with respect to the W. Dedicated laboratory experiments are performed to investigate the interaction of W with N plasmas. In this paper, the structure and mechanical performance of WNx coatings with different nitrogen content prepared by rf plasma sputtering have been investigated. The coatings exhibited different phases as a function of the nitrogen content: films with very low N content (<1 atom%) mainly exhibited the W phase, the W and WNx phases were contemporaneously present for N contents in the range 1–5 % and only the WNx phases were observed for nitrogen content higher than 5 %. The mechanical performance of the WNx coatings was strongly influenced by the structure. The coating formed with 5 % of nitrogen showed the highest mechanical performance. The substrate heating during the plasma deposition has also improved the mechanical properties.

Keywords

Mixed materials Tungsten nitride Tokamak 

References

  1. 1.
    M. Bakhtiari et al., Nucl. Fusion 45, 318–325 (2005)CrossRefADSGoogle Scholar
  2. 2.
    D.G. Whyte et al., Phys. Rev. Lett. 89, 055001 (2002)CrossRefADSGoogle Scholar
  3. 3.
    C. Linsmeier, J. Luthin, P. Goldstraß, J. Nucl. Mater. 290–293, 25–32 (2001)CrossRefGoogle Scholar
  4. 4.
    R.F. Bunshah (ed.), in Handbook of Deposition Technologies for Films and Coatings, 2nd edn. (Noyes Publications, Westwood, New Jersey, 1994) ISBN: 0-8155-1337-2Google Scholar
  5. 5.
    E. Vassallo, R. Caniello, M. Canetti, D. Dellasega, M. Passoni, Thin Solid Films 558, 189–193 (2014)CrossRefADSGoogle Scholar
  6. 6.
    S.M. Rossnagel, I.C. Noyan, J.C. Cabral, J. Vac. Sci. Technol. B 20(5), 2047 (2002)CrossRefGoogle Scholar
  7. 7.
    N.M.G. Parreira, N.J.M. Carvalho, F. Vaz, A. Calveiro, Surf. Coat. Technol. 200, 6511–6516 (2006)CrossRefGoogle Scholar
  8. 8.
    M. Bereznai, Z. Tòth, A.P. Caricato, M. Fernandez, A. Luches, G. Majni, P. Mengucci, P.M. Nagy, A. Juhasz, L. Nanai, Thin Solid Films 473, 16–23 (2005)CrossRefADSGoogle Scholar
  9. 9.
    M.L. Addonizio, A. Castaldo, A. Antonaia, E. Gambale, L. Iemmo, J. Vac. Sci. Technol. A 30, 031506 (2012)CrossRefGoogle Scholar
  10. 10.
    J.A. Thornton, J. Vac. Sci. Technol. 11, 666 (1974)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • E. Vassallo
    • 1
    Email author
  • G. Angella
    • 2
  • R. Caniello
    • 1
  • S. Deambrosis
    • 3
  • F. Inzoli
    • 1
  • E. Miorin
    • 3
  • M. Pedroni
    • 1
  1. 1.CNRIstituto di Fisica del Plasma “P. Caldirola”MilanItaly
  2. 2.CNRIstituto per l’Energetica e le InterfasiMilanItaly
  3. 3.CNRIstituto per l’Energetica e le InterfasiPaduaItaly

Personalised recommendations