Journal of Fusion Energy

, Volume 34, Issue 5, pp 959–978 | Cite as

Simulations and Experiments to Reach Numerical Multiphase Informations for Security Analysis on Large Volume Vacuum Systems Like Tokamaks

  • I. Lupelli
  • A. MaliziaEmail author
  • M. Richetta
  • L. A. Poggi
  • J. F. Ciparisse
  • M. Gelfusa
  • P. Gaudio
Original Research


Dust re-suspension as a consequences of loss of vacuum accident (LOVA) or loss of coolant accident (LOCA) situations inside a nuclear fusion plant (ITER-like) is an important issue for the workers’ safety and for the security of the plant. The dust size expected inside tokamaks like ITER is of the order of microns (0.1–1000 μm). Analysis of the thermo fluid-dynamics and transport phenomena involved during an accidental pressurization transitory is necessary in order to set up and operated tokamaks with careful consideration of the potential risks. Computational fluid dynamics (CFD) study of LOVA scenario is a challenging task for today numerical methods and models because it involves 3D large vacuum volumes, multiphase flows ranging from highly supersonic to nearly incompressible and heat transfer simultaneously. Present work deals with development and experimental validation of CFD model, which simulates the complex thermo fluid-dynamic field and gives some indication about internal hazardous dust mobilization phenomena during vessel filling at near vacuum conditions, for supporting first instant of LOVA safety analysis. The research activity had been carried out in the framework of EURATOM–ENEA Association—University of Rome Tor Vergata Quantum Electronics Plasma Physics and Materials Research Group.


CFD Fusion LOVA Multiphase Nuclear Security 



We want to acknowledge Quantum Electronics Plasma Physics and Materials (QEPM) Research Group (Department of Industrial Engineering, University of Rome Tor Vergata) and the researchers involved in safety and security at ENEA FUS TECH (Frascati, Rome).

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    R. Toschi, Fusion Eng. Des. 36, 1–8 (1997)CrossRefGoogle Scholar
  2. 2.
    A.V. Chankin et al., J. Nucl. Mater. 668, 290–293 (2001)Google Scholar
  3. 3.
    S.K. Erents, Fusion 42, 905 (2000)CrossRefGoogle Scholar
  4. 4.
    N. Asakura, Phys. Rev. Lett. 84, 3093 (2000)CrossRefADSGoogle Scholar
  5. 5.
    S.J. Piet, G. Federici, ITER Rep. S 81 RI 13 96-06-28 W 1.4. (1996)Google Scholar
  6. 6.
    J.P. Sharpe, D.A. Petti, H.-W. Bartels, Fusion Eng. Des. 63–64, 153–163 (2002)CrossRefGoogle Scholar
  7. 7.
    J. Winter, Phys. Plasmas 7, 3862–3866 (2000)CrossRefADSGoogle Scholar
  8. 8.
    T. Honda et al., Fusion Eng. Des. 47, 361–375 (2000)CrossRefGoogle Scholar
  9. 9.
    E. Eberta, J. Raeder, Fusion Eng. Des. 17, 307–312 (1991)CrossRefGoogle Scholar
  10. 10.
    K. Matsuki et al., Fusion Eng. Des. 81, 1347–1351 (2006)CrossRefGoogle Scholar
  11. 11.
    J.P. Van Dorsselaere et al., Fusion Eng. Des. 84, 1905–1911 (2009)CrossRefGoogle Scholar
  12. 12.
    P. Gaudio, A. Malizia, I. Lupelli, in Proceeding of international conference on mathematical models for engineering science, 134–147 (2010)Google Scholar
  13. 13.
    M. Benedetti et al., Fusion Eng. Des. 88, 2665–2668 (2013)CrossRefGoogle Scholar
  14. 14.
    C. Bellecci et al., Fusion Eng. Des. 86, 2774–2778 (2011)CrossRefGoogle Scholar
  15. 15.
    C. Bellecci et al., Nucl. Fusion 51, 053017 (2011)CrossRefADSGoogle Scholar
  16. 16.
    C. Bellecci et al., Fusion Eng. Des. 86, 330–340 (2011)CrossRefGoogle Scholar
  17. 17.
    M. Benedetti et al., in Proceedings of the 2nd international conference on FLUIDSHEAT’11 TAM’11. In Proceedings of the 2nd international conference on FLUIDSHEAT’11 TAM’11, 142–147 (2011)Google Scholar
  18. 18.
    C. Bellecci et al., in Proceedings of the 37th EPS conference on plasma physics 34, 703–706 (2010)Google Scholar
  19. 19.
    P. Gaudio, A. Malizia, I. Lupelli, in Proceedings of the international conference on mathematical models for engineering science (MMES’10), (MMES’10), 134–147 (2010)Google Scholar
  20. 20.
    C. Bellecci et al., in 36th EPS conference on plasma physics 33, 266–269 (2009)Google Scholar
  21. 21.
    C. Bellecci et al., in 35th EPS conference on Plasma Physics 32, P-1.175 (2008)Google Scholar
  22. 22.
    ITER Joint Central Team, General Safety and Security Report (GSSR) G 84 RI 1 01-07-09 R 1.0. (IAEA, 2001), Accessed 6 Feb 2015
  23. 23.
    T. Pinna et al., Fusion Eng. Des. 85, 1410–1415 (2010)CrossRefGoogle Scholar
  24. 24.
    C.F.X. Ansys, Solver theory guide (ANSYS, Inc., Canonsburg, 2009)Google Scholar
  25. 25.
    A.K. Majumdar, Generalized unsteady solution of isentropic and isothermal pressurization process (NASA-CR 204244, Huntsville, 1990)Google Scholar
  26. 26.
    G. Van Wylen, L. Sonntag, Fundamentals of classical thermodynamics (Wiley, New Jersey, 1976)Google Scholar
  27. 27.
    Peter V. Nielsen, F. Allard, H.B. Awbi, L. Davidson, A. Schälin, Fluidodinamica Computazionale (Dario Flaccoro Editore, Italy, 2009)Google Scholar
  28. 28.
    A. Quarteroni, Modellistica numerica per problemi differenziali (Springer, Berlin, 2008)CrossRefGoogle Scholar
  29. 29.
    F. Thompson, B.K. Soni, N.P. Weatherill, Handbook of grid generation (CRC Press LLC, Florida, 1999)zbMATHGoogle Scholar
  30. 30.
    H.S. Mukunda, Direct simulation of high-speed mixing layers (NASA Technical Paper 3186, 1992)Google Scholar
  31. 31.
    P. Incropera, Fundamentals of heat and mass transfer, 7th edn. (New Jersey, Wiley, 2012)Google Scholar
  32. 32.
    D. Chiappini, Numerical analysis of multiphase flows through the lattice Boltzmann method (PhD Thesis, Department of Industrial Engineering, University of Rome Tor Vergata, 2010)Google Scholar
  33. 33.
    E.D. Fatnes, Numerical simulations of the flow and plugging behaviour of hydrate particles (Department of Physics and Technology, University of Bergen, 2010)Google Scholar
  34. 34.
    D. Pfleger, Chem. Eng. 54, 5091–5099 (1999)CrossRefGoogle Scholar
  35. 35.
    C.J. Chen, S.Y. Jaw, Fundamental of turbulence modeling (CRC Press, Florida, 1997)Google Scholar
  36. 36.
    D.C. Wilcox, Turbulence modeling for CFD (DCW Industries, La Canada, 1994)Google Scholar
  37. 37.
    R.A. Andersson, Fluid dynamics for engineers (Cambridge University Press, Cambridge, 2012)Google Scholar
  38. 38.
    S. Crist, P.M. Sherman, Study of highly underexpanded sonic jet (AIAA Journal, New York, 1966)Google Scholar
  39. 39.
    C.D. Wilcox, Multiscale model for turbulent flows (AIAA 24th Aerospace Sciences Meeting, American Institute of Aeronautics and Astronautics, 1986)Google Scholar
  40. 40.
    A. Malizia et al., Fusion Eng. Des. (2014). doi: 10.1016/j.fusengdes.2014.01.014 Google Scholar
  41. 41.
    A. Malizia et al., Adv. Mater. Sci. Eng. (2014). doi: 10.1155/2014/201831 Google Scholar
  42. 42.
    Lupelli et al., Fusion Eng. Des. (2014). doi: 10.1016/j.fusengdes.2014.03.064 Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • I. Lupelli
    • 1
  • A. Malizia
    • 2
    Email author
  • M. Richetta
    • 2
  • L. A. Poggi
    • 2
  • J. F. Ciparisse
    • 2
  • M. Gelfusa
    • 2
  • P. Gaudio
    • 2
  1. 1.EURATOM/CCFE AssociationCulham Science CentreAbingdonUK
  2. 2.Associazione EUROFUSION-ENEA, Department of Industrial EngineeringUniversity of Rome “Tor Vergata”RomeItaly

Personalised recommendations