Advertisement

Journal of Fusion Energy

, Volume 33, Issue 5, pp 555–564 | Cite as

Gamma-Ray Shielding Effectiveness of Some Alloys for Fusion Reactor Design

  • Vishwanath P. Singh
  • M. E. Medhat
  • N. M. Badiger
Original Research

Abstract

The gamma-ray shielding effectiveness of some oxide dispersion-strengthen (ODS) alloys by means of mass attenuation coefficients, mean free path, exposure buildup factors and energy absorption buildup factors have been investigated in the present study. The buildup factors were calculated using geometrical progression method for photon energy 0.015–15 MeV up to 40 mfp penetration depth. The mass attenuation coefficients were calculated by using XCOM program and Geant4 simulation methods and found a very good agreement. Our investigation signifies that the low iron content ODS alloys are superior shielding materials with the lower buildup factors. This study should be useful for selection of shielding materials for their applications in fusion reactors design and future nuclear reactor technologies.

Keywords

Gamma Fusion reactor ODS Geant4 

References

  1. 1.
    J.J. Bevelacqua, Radiation Protection Management 22(2), 10–36 (2005)Google Scholar
  2. 2.
    P. Batistoni et al., Fusion Eng. Des. 69, 649–654 (2003)CrossRefGoogle Scholar
  3. 3.
    P. Pandey et al., J. Nucl. Mater. 437, 29–36 (2013)Google Scholar
  4. 4.
    H. Zhu et al., Engineering Asset Management and Infrastructure Sustainability, pp 1147–1160 (2012)Google Scholar
  5. 5.
    A. Hirata et al., Nat. Mater. 10, 922–926 (2011)ADSCrossRefMathSciNetGoogle Scholar
  6. 6.
    Nuclear Corrosion Science and Engineering, Woodhead publishing Limited, 80 High Street, Sawston, Cambridge CB22 3HJ, UK.Google Scholar
  7. 7.
    S. Ukai et al., J. Nucl. Sci. Technol. 34, 256–263 (1997)CrossRefGoogle Scholar
  8. 8.
    S. Ukai et al., J. Nucl. Sci. Technol. 36, 710–712 (1999)CrossRefGoogle Scholar
  9. 9.
    A. Alamo et al., Structural Applications of Mechanical Alloying (ASM International conference, South Carolina, 1990)Google Scholar
  10. 10.
    A. Alamo et al., Mater. Sci. Forum 183, 88–90 (1992)Google Scholar
  11. 11.
    A. Dasgupta et al., Electron Microscopy Studies on Oxide Dispersion Strengthened Steels, Materials Challenges and Testing for Supply of Energy and Resources, (2012) p 117–128Google Scholar
  12. 12.
    S. C. Chetal et al., Current Status of Fast Reactors and Future Plans in India, Asian Nuclear Prospect (2010)Google Scholar
  13. 13.
    M.K. Miller et al., Mater. Sci. Eng. 353, 140–145 (2003)CrossRefGoogle Scholar
  14. 14.
    D.K. Mukhopadhyay et al., J. Nucl. Mater. 258–263(2), 1209–1215 (1998)CrossRefGoogle Scholar
  15. 15.
    X.B. Ma et al., Fusion Eng. Des. 87, 1633–1638 (2012)CrossRefGoogle Scholar
  16. 16.
    ANSI/ANS-6.4.3, Gamma Ray Attenuation Coefficient and Buildup Factors for Engineering Materials (American Nuclear Society, La Grange Park, Illinois, 1991)Google Scholar
  17. 17.
    Y. Harima et al., Nucl. Sci. Engg. 94, 24–25 (1986)Google Scholar
  18. 18.
    V.P. Singh et al., Radiation Effects and Defects in Solids, 169(6), 547–559 (2014)Google Scholar
  19. 19.
    V.P. Singh et al., Radiation Physics and Chemistry, 98, 14–21 (2014)Google Scholar
  20. 20.
    V.P. Singh, N. M. Badiger, J. Radiological Protection, 34, 89-101 (2014)Google Scholar
  21. 21.
    V.P. Singh, N.M. Badiger, Int. J. Nucl. Energ. Sci. Tech. 7, 75-99 (2012)Google Scholar
  22. 22.
    V.D. Castro et al., J. Phys: Conf. Ser. 241, 012107 (2010)ADSGoogle Scholar
  23. 23.
    M.S. El-Genk, J.M. Tournier, J. Nucl. Mater. 340, 93–112 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    R.L. Klueh et al., J. Nucl. Mater. 341, 103–114 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    D.F. Jackson, D.J. Hawkes, Physics Report 70, 169–233 (1981)ADSCrossRefGoogle Scholar
  26. 26.
    M. J. Berger et al., (2010). http://physics.nist.gov/xcom
  27. 27.
    S. Agostinelli et al., Nucl. Instrum Methods Phys Res A. 506, 250–303 (2003)ADSCrossRefGoogle Scholar
  28. 28.
    M.E. Medhat, Y. Wang, Ann. Nucl. Energ. 62, 316–320 (2013)CrossRefGoogle Scholar
  29. 29.
    Y. Harima, Nucl. Sci. and Eng. 83, 299–309 (1983)Google Scholar
  30. 30.
    M.J. Maron, Numerical analysis: A Practical approach (Macmillan, New York, 2007)Google Scholar
  31. 31.
    Y. Harima, Radiat. Phys. Chem. 41(4/5), 631–672 (1993)Google Scholar
  32. 32.
    M. Kurudirek, Y. Ozdemir, Nucl. Instrum. Methods B 269, 7–19 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    D. Luis, Update to ANSI/ANS-6.4.3-1991 for low-Z materials and compound materials and review of particle transport theory, UNLV, Las Vegas, NV 89154 (2009)Google Scholar
  34. 34.
    I.I. Bashter, Ann. Nucl. Energ. 24, 1389–1401 (1977)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Vishwanath P. Singh
    • 1
    • 2
  • M. E. Medhat
    • 3
    • 4
  • N. M. Badiger
    • 1
  1. 1.Department of PhysicsKarnatak UniversityDharwadIndia
  2. 2.Health Physics Section, Kaiga Atomic Power Station-3&4NPCILKarwarIndia
  3. 3.Experimental Nuclear Physics DepartmentNuclear Research CentreCairoEgypt
  4. 4.Institute of High Energy PhysicsCASBeijingChina

Personalised recommendations