Journal of Fusion Energy

, Volume 33, Issue 5, pp 476–488 | Cite as

StarDriver: A Flexible Laser Driver for Inertial Confinement Fusion and High Energy Density Physics

  • David EimerlEmail author
  • E. Michael Campbell
  • William F. Krupke
  • Jason Zweiback
  • W. L. Kruer
  • John Marozas
  • J. Zuegel
  • J. Myatt
  • J. Kelly
  • D. Froula
  • R. L. McCrory
Original Research


We propose a novel method to minimize laser–plasma instabilities and improve laser–plasma coupling by the use of multi-beam laser architecture with a large system frequency bandwidth and many beamlets per unit solid angle. The StarDriver™, laser driver is constructed from 104 to 105 individual lasers, each delivering nominally 100 J in pulses of ~3–30 ns at a nominal wavelength of ~355 nm with better than 3–5 diffraction-limited performance. The beamlets are individually relatively narrowband to facilitate maximum laser performance, but the ensemble of beamlets span a wide frequency range. Currently available laser media enable Δω/ω ~ 2 % at 355 nm with the possibility of system bandwidths approaching 10 % in the future. The many beamlets of StarDriver™ provide optimal asymptotic smoothing for hydrodynamic instabilities (0–1 %), innovative focusing strategies including zooming, and the large bandwidth enables extremely rapid hydrodynamic smoothing times ~30 fs. The distribution of frequencies among the beamlets allows flexibility for fine control of the seeding of the Rayleigh–Taylor instability. The ultra-broad bandwidth combined with the large total k-spectrum of the laser drive in the plasma corona may enable complete suppression of the most problematic laser–plasma instabilities such as stimulated Brillouin backscatter, stimulated Raman scatter, cross-beam energy transfer, and the two plasmon decay instability. StarDriver™ offers potentially superior flexibility in laser drivers for inertial confinement fusion, enabling almost arbitrary sequencing of wavelength, polarization, focus, and fine control of the spatio-temporal properties of the drive in the corona. The highly modular strategy of StarDriver™ should enable an attractive development pathway as well as maximizing overall system efficiency.


Inertial confinement fusion Inertial fusion energy Nuclear fusion Laser drivers Ultrabroad bandwidth High energy density physics StarDriver Instabilities 


  1. 1.
    E.M. Campbell, W.J. Hogan, The National Ignition Facility: applications for Inertial Fusion Energy and High Energy Density Science. 26th European Physical Society Conference on Controlled Fusion and Plasma Physics, Maastricht, Netherlands, 14–18 June 1999Google Scholar
  2. 2.
    E.M. Campbell, W.J. Hogan, D.H. Crandall, Inertial Fusion Science and Technology for the Next Century. 1st International Conference on Inertial Fusion Sciences and Applications, Bordeaux, France, 12–17 September 1999Google Scholar
  3. 3.
    E.M. Campbell, W.J. Hogan, D.H. Crandall, Inertial Fusion Energy Development: what is Needed and What will be Learned at the National Ignition Facility. 1st International Conference on Inertial Fusion Sciences and Applications, Bordeaux, France, 12–17 September 1999Google Scholar
  4. 4.
    C.A. Haynam et al., National ignition facility laser performance status. Appl. Opt. 46(16), 3276 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    J.A. Paisner, E.M. Campbell, W.F. Hogan, The National Ignition Facility Project. ANS 11th Annual Conference on Fusion Energy, New Orleans, 16 June 1994Google Scholar
  6. 6.
    J. Lindl, Development of the indirect drive approach to inertial confinement fusion and the target physics basis for ignition and gain. Phys. Plasmas 2, 3933 (1995)ADSCrossRefGoogle Scholar
  7. 7.
    LLE Review. Scientific reports of the Laboratory for Laser Energetics, University of Rochester, 250 E. River Rd, Rochester, vols. 1–126Google Scholar
  8. 8.
    R.L. McCrory, Laser-Driven Inertial Fusion Energy; Direct-Drive Targets Overview. NAS/NAE Committee on the Prospects for IFE Systems San Ramon, CA 29 January 2011Google Scholar
  9. 9.
    R.H. Lehmberg, S.P. Obenschain, The use of induced spatial coherence for uniform illumination of laser fusion targets. Opt. Commun. 46, 27 (1983)ADSCrossRefGoogle Scholar
  10. 10.
    S. Skupsky et al., Improved laser-beam uniformity using the angular dispersion of frequency modulated light. J. Appl. Phys. 66, 3456 (1989)ADSCrossRefGoogle Scholar
  11. 11.
    NIC scientists, Private CommunicationsGoogle Scholar
  12. 12.
    J.E. Rothenberg, S.V. Weber, The Impact of Beam Smoothing Method on Direct Drive Target Performance for the NIF. 2nd Annual International Conference on Solid-State Lasers for Application to ICF, Paris, France, 22–25 October 1996Google Scholar
  13. 13.
    D. Eimerl, W. Kruer, E.M. Campbell, Ultrabroad bandwidth for ICF applications. Comments Plasma Phys. 15, 85 (1993)Google Scholar
  14. 14.
    C.D. Orth, S.A. Payne, W.F. Krupke, A diode pumped solid state laser driver for inertial fusion energy. Nucl. Fusion 36, 75 (1996)ADSCrossRefGoogle Scholar
  15. 15.
    C. Labaune, D. Hulin, A. Galvanauskas, G.A. Mourou, On the feasibility of a fiber-based inertial fusion laser driver. Opt. Commun. 281, 4075–4080 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    Z. Huang, H. Lin, D. Xu, M. Li, J. Wang, Y. Deng, R. Zhang, Y. Zhang, X. Tian, X. Wei, Parameter space for the collective laser coupling in the laser fusion driver based on the concept of fiber amplification network. Opt. Exp. 15, 16503 (2013)Google Scholar
  17. 17.
    S. Jiang, M. Hanna, F. Druon, P. Georges, Impact of self-phase modulation on coherently combined fiber chirped-pulse amplifiers. Appl. Opt. 35, 1293 (2012)Google Scholar
  18. 18.
    E.C. Cheung, M. Weber, R.R. Rice, in Advanced Solid-State Photonics, Technical Digest (Optical Society of America, 2008), paper WA2Google Scholar
  19. 19.
    E.M. Campbell, D. Eimerl, W.F. Krupke, StarDriver: a Flexible Laser Driver for Inertial Fusion Energy. US Patent Application #PCT/US2012/034289, 19 April 2012Google Scholar
  20. 20.
    D. Eimerl, E.M. Campbell, W.F. Krupke, J. Zweiback, W.L. Kruer, J. Zuegel, J. Myatt, J. Kelly, D. Froula, R.L. McCrory, StarDriver: a Flexible Laser Driver for Inertial Confinement Fusion and High Energy Density Physics. Paper NP8.00081, 55th Annual meeting of the APS division of plasma physics, Denver, Co, vol 58, 16 (November 2013)Google Scholar
  21. 21.
    Projections of the cost of the 2 MJ NIF laser based on the 80 kJ NOVA laser technology and design were in the range of 15–20 bn. Actual NIF laser cost was about 2–4 bnGoogle Scholar
  22. 22.
    D. Eimerl, J.R. Murray, J.F. Holzrichter, “Broadband Conversion of Fusion Lasers”, CLEOS/ICF’80 (San Diego, CA, 1980)Google Scholar
  23. 23.
    D. Eimerl, R.S. Hargrove, J.A. Paisner, Efficient frequency conversion by stimulated Raman scattering. Phys. Rev. Lett. 46, 651 (1981)ADSCrossRefGoogle Scholar
  24. 24.
    D. Eimerl, D. Milam, J. Yu, Large bandwidth frequency-converted Nd:glass laser with Δν/ν = 2%. Phys. Rev. Lett. 70, 2738 (1993)ADSCrossRefGoogle Scholar
  25. 25.
    Y. Wu, S. Han, X. Song, Z. Xu, Y. Tang, B. Shuai, The control of laser–plasma parametric instabilities and the temperature of suprathermal electrons with ultrabroad bandwidth frequency modulated laser pulse. Plasma Phys. Control. Fusion 43, 469–482 (2001)ADSCrossRefGoogle Scholar
  26. 26.
    E. Takahashi, L.L. Losev, T. Tabuchi, Y. Matsumoto, S. Kato, I. Okuda, T. Aota, Y. Owadano, Generation of 30 pure rotational Raman sidebands using two-color pumping of D2 gas by KrF laser. Opt. Commun. 257, 133 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    S. Skupsky, R.S. Craxton, Irradiation uniformity for high-compression laser-fusion experiments. Phys. Plasmas 6, 2157 (1999)ADSCrossRefGoogle Scholar
  28. 28.
    S.P. Obenschain, S.E. Bodner†, D. Colombant, K. Gerber, R.H. Lehmberg, E.A. McLean, A.N. Mostovych, M.S. Pronko, C.J. Pawley, A.J. Schmitt, J.D. Sethian, V. Serlin, J.A. Stamper, C.A. Sullivan, J.P. Dahlburg, J.H. Gardner, Y. Chan, A.V. Deniz, J. Hardgrove, T. Lehecka, M. Klapisch, The Nike KrF laser facility: performance and initial target experiments. Phys. Plasmas 3, 2098 (1996)ADSCrossRefGoogle Scholar
  29. 29.
    D.H. Froula, I.V. Igumenschev, D.T. Michel, D.H. Edgell, R. Follet, VYu. Glebov, V.N. Goncharov, J. Kwiatkowski, F.J. Marshall, P.B. Radha, W. Seka, C. Sorce, S. Stagnitto, C. Stoeckl, T.C. Sangster, Increasing hydrodynamic efficiency by reducing cross-beam energy transfer in direct-drive-implosion experiments. Phys. Rev. Lett. 108, 125003 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    D.T. Michel, A.V. Maximov, R.W. Short, S.X. Hu, J.F. Myatt, W. Seka, A.A. Solodov, B. Yaakobi, D.H. Froula, Experimental validation of the two-plasmon decay common-wave process. Phys. Rev. Lett. 109, 155007 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    D.H. Froula, B. Yaakobi, S.X. Hu, P.-Y. Chang, R.S. Craxton, D.H. Edgell, R. Follett, D.T. Michel, J.F. Myatt, W. Seka, R.W. Short, A. Solodov, C. Stoeckl, Saturation of the two-plasmon decay instability in long-scale-length plasmas relevant to direct-drive inertial confinement fusion. Phys. Rev. Lett. 108, 165003 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    C. Stoeckl, R.E. Bahr, B. Yaakobi, W. Seka, S.P. Regan, R.S. Craxton, J.A. Delettrez, R.W. Short, J. Myatt, A.V. Maximov, H. Baldis, Multibeam effects on fast-electron generation from two-plasmon-decay instability. Phys. Rev. Lett. 90, 235002 (2003)ADSCrossRefGoogle Scholar
  33. 33.
    D.T. Michel, A.V. Maximov, R.W. Short, J.A. Delettrez, D. Edgell, S.X. Hu, I.V. Igumenshchev, J.F. Myatt, A.A. Solodov, C. Stoeckl, B. Yaakobi, D.H. Froula, Measured hot-electron intensity thresholds quantified by a two-plasmon-decay resonant common-wave gain in various experimental configurations. Phys. Plasmas 20, 055703 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    J.W. Goodman, Statistical Optics (New York, Wiley, 1984)Google Scholar
  35. 35.
    R.H. Lehmberg, Y. Chan, Near-field nonuniformities in angularly multiplexed KrF lasers with induced spatial incoherence. Naval Research Laboratory. Appl. Opt. 44, 2805 (2005)ADSCrossRefGoogle Scholar
  36. 36.
    A.V. Deniz et al., Comparison between measured and calculated nonuniformities of Nike laser beams smoothed by induced spatial incoherence. Opt. Commun. 147, 402 (1998)ADSCrossRefGoogle Scholar
  37. 37.
    R.H. Lehmberg, J.E. Rothenberg, Comparison of optical beam smoothing techniques for inertial confinement fusion and improvement of smoothing by the use of zero-correlation masks. J. Appl. Phys. 87, 1012 (2000)ADSCrossRefGoogle Scholar
  38. 38.
    D. Eimerl, Inhomogeneously Pumped Stimulated Raman Scattering. International Conference on Lasers, Orlando FL, (1978), Proceedings, STS press, 333 (1979)Google Scholar
  39. 39.
    W.L. Kruer, Physics of LaserPlasma Interactions. Frontiers in Physics (1989)Google Scholar
  40. 40.
    M.B. Hooper, Laser Plasma Interactions 5: inertial Confinement Fusion. 45th Scottish Universities Summer School in Physics, St Andrews (1995)Google Scholar
  41. 41.
    D. Eimerl, Nonforward stimulated Raman scattering from a phase-modulated pump beam. J. Opt. Soc. Am. B 24, 2465–2471 (2007)ADSCrossRefMathSciNetGoogle Scholar
  42. 42.
    G. Laval, R. Pellat, D. Pesme, A. Ramani, M. Rosenbluth, E.A. Williams, Parametric instabilities in the presence of space-time random fluctuations. Phys. Fluids 20, 2049 (1977)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  43. 43.
    Y.C. Lee, P.K. Kaw, Temporal electrostatic instabilities in inhomogeneous plasmas. Phys. Rev. Lett. 32, 135 (1974)ADSCrossRefGoogle Scholar
  44. 44.
    C.S. Liu, M.N. Rosenbluth, Parametric decay of electromagnetic waves into two plasmons and its consequences. Phys. Fluids 19, 967 (1976)ADSCrossRefGoogle Scholar
  45. 45.
    C.S. Liu, N. Marshall, M.N. Rosenbluth, R.B. White, Raman and Brillouin scattering of electromagnetic waves in inhomogeneous plasma”. Phys. Fluids 17, 1211 (1974)ADSCrossRefGoogle Scholar
  46. 46.
    M.N. Rosenbluth, Parametric instabilities in inhomogeneous media. Phys. Rev. Lett. 29, 565 (1972)ADSCrossRefGoogle Scholar
  47. 47.
    M.N. Rosenbluth, R.B. White, C.S. Liu, Temporal evolution of a three-wave parametric instability. Phys. Rev. Lett. 31, 1190 (1973)ADSCrossRefGoogle Scholar
  48. 48.
    J.F. Drake, P.K. Kaw, Y.C. Lee, G. Schmidt, C.S. Liu, M.N. Rosenbluth, Parametric instabilities of electromagnetic waves in plasmas. Phys. Fluids 17, 778 (1974)ADSCrossRefGoogle Scholar
  49. 49.
    R. Yan, A.V. Maximov, C. Ren, The Linear regime of the two plasmon decay instability in inhomogeneous plasmas. Phys. Plasma 17, 052701 (2010)ADSCrossRefGoogle Scholar
  50. 50.
    D.H. Edgell, Modeling Cross-Beam Energy Transfer for Polar-Drive Experiments. 54th Annual Meeting of the American Physical Society, Division of Plasma Physics, Providence, RI, 29 October–2 November 2012Google Scholar
  51. 51.
    J.A. Marozas, Cross-Beam Energy Transfer (CBET) Effect Integrated into the 2-D Hydrodynamics Code DRACO. 54th Annual Meeting of the American Physical Society, Division of Plasma Physics, Providence, RI, 29 October–2 November 2012Google Scholar
  52. 52.
    A.V. Maximov, J.F. Myatt, R.W. Short, I.V. lgumenshchev, D.H. Edgell, W. Seka, Scattering of Multiple Crossing Laser Beams in Direct-Drive Inertial Confinement Fusion (ICF) Plasmas. 54th Annual Meeting of the American Physical Society, Division of Plasma Physics, Providence, RI, 29 October–2 November 2012Google Scholar
  53. 53.
    I.V. Igumenschev, W. Seka, D.H. Edgell, D.T. Michel, D.H. Froula, V.N. Goncharov, R.S. Craxton, L. Divol, R. Epstein, R. Follet, J.H. Kelley, T.Z. Kosc, A.V. Maximov, R.L. McCrory, D.D. Meyerhofer, P. Michel, J.F. Myatt, T.C. Sangster, A. Shvydky, S. Skupsky, C. Stoeckl, Crossed-beam energy transfer in direct-drive implosions. Phys. Plasmas 19, 056314 (2012)ADSCrossRefGoogle Scholar
  54. 54.
    L. J. Perkins, R. Betti, K. N. LaFortune, W. H. Williams, Shock ignition: a new approach to high gain inertial confinement fusion on the national ignition facility. Phys. Rev. Lett. 103(4), (2009)Google Scholar
  55. 55.
    J. Myatt, The Deleterious Effects of Multi-Beam Laser–Plasma Interactions on Inertial Confinement Fusion and their Mitigation. Paper FR1.00001, 55th Annual meeting of the APS division of plasma physics, Denver, Co, vol 58, 16 (November 2013)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • David Eimerl
    • 1
    Email author
  • E. Michael Campbell
    • 2
  • William F. Krupke
    • 3
  • Jason Zweiback
    • 2
  • W. L. Kruer
    • 4
  • John Marozas
    • 5
  • J. Zuegel
    • 5
  • J. Myatt
    • 5
  • J. Kelly
    • 5
  • D. Froula
    • 5
  • R. L. McCrory
    • 5
  1. 1.Eimex, IncFairfieldUSA
  2. 2.Logos TechnologiesWashingtonUSA
  3. 3.WFK Lasers, LLCPleasantonUSA
  4. 4.LLNL (retired)LivermoreUSA
  5. 5.Laboratory for Laser EnergeticsUniversity of RochesterRochesterUSA

Personalised recommendations