Advertisement

Journal of Fusion Energy

, Volume 33, Issue 4, pp 319–335 | Cite as

Plasma Focus Radiative Model: Review of the Lee Model Code

Review Article

Abstract

The code couples the electrical circuit with plasma focus (PF) dynamics, thermodynamics and radiation. It is energy-, charge- and mass-consistent and accounts for the effects of transit times of small disturbances and plasma self-absorption. It has been used in design and interpretation of Mather-type PF experiments and as a complementary facility to provide diagnostic reference numbers in all gases. Information computed includes axial and radial dynamics, SXR emission characteristics and yield for various applications including microelectronics lithography and optimization of machines. Plasma focus neutron yield calculations, current and neutron yield limitations, deterioration of neutron scaling (neutron saturation), radiative collapse, speed-enhanced PF, current-stepped PF and extraction of diagnostic and anomalous resistance data from current signals have been studied using the code; which also produces reference numbers for fluence, flux and energy of deuteron beams and ion beams for all gases. There has been no pause in its continuous evolution in three decades so much so that the model code has no formal source reference except www.plasmafocus.net. This review presents, for the first time a comprehensive up-to-date version of the 5-phase model code. The equations of each phase are derived. Those of the first two phases are normalized to reveal important scaling parameters. The focus pinch phase is discussed with radiation-coupled dynamics necessitating the computation of radiation terms moderated by plasma self-absorption. Neutron and ion beam yields are computed. The 5-phase model code appears to be adequate for all Mather-type PF, lacking only in one aspect that for high inductance PF (termed Type 2) the measured current waveform contains an extended dip which cannot be fitted by the 5-phase code; necessitating an extended 6-phase code. This sixth phase (termed phase 4a) is dominated by anomalous resistance, providing a way to extract valuable data on anomalous resistivity from the current trace.

Keywords

Plasma focus Plasma focus modeling Plasma focus radiation Lee model code 

Notes

Acknowledgments

The author acknowledges students, colleagues and collaborators who have in one way or another contributed to the development of this code over the past 3 decades.

References

  1. 1.
    N.V. Filippov, T.I. Filippova, V.P. Vinogradov, Nucl. Fusion. Suppl 2, 577 (1962). http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=4731683
  2. 2.
    J.W. Mather, Phys. Fluids 7, S28 (1964)ADSCrossRefGoogle Scholar
  3. 3.
    D.E. Potter, Phys. Fluids 14, 1911 (1971)ADSCrossRefGoogle Scholar
  4. 4.
    M. Trunk, Plasma Phys. 17, 237–248 (1975)ADSCrossRefGoogle Scholar
  5. 5.
    A. Bernard et al., J. Moscow Phys. Soc. 8, 93–170 (1998). http://www.icdmp.pl/pf1000.html
  6. 6.
    M. Krishnan, IEEE Trans. Plasma Sci. 40(12), 3189–3221 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    S. Lee, T.Y. Tou, S.P. Moo, M.A. Eissa, A.V. Gholap, K.H. Kwek, S. Mulyodrono, A.J. Smith, S. Suryadi, W. Usada, M. Zakaullah, Am. J. Phys. 56, 62 (1988)ADSCrossRefGoogle Scholar
  8. 8.
    S. Lee, Twelve Years of UNU/ICTP PFF: A Review IC, 98 (231) Abdus Salam ICTP, Miramare, Trieste, (ICTP OAA, 1998), http://eprints.ictp.it/31/
  9. 9.
    S. Lee, C.S. Wong, Initiating and strengthening plasma research in developing countries. Phys.Today 59, 31–36 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    S. Lee in Radiation in Plasmas, vol II, ed. by B. McNamara. Proceedings of Spring College in Plasma Physics 1983, ICTP, Trieste, (World Scientific Pub Co, Singapore, 1984). ISBN 9971-966-37-9, p. 978–987Google Scholar
  11. 11.
    S. Lee, B.C. Tan, C.S. Wong, A.C. Chew (eds.), Laser and Plasma Technology. Proceedings of First Tropical College on Applied Physics 26th Dec 1983–14th Jan 1984, (World Scientific Publishing Co., Kuala Lumpur, 1985). ISBN 9971-978-27-X, p. 38–62Google Scholar
  12. 12.
    S. Lee, Radiative Dense Plasma Focus Computation Package: RADPF (2014). http://www.plasmafocus.net; http://www.intimal.edu.my/school/fas/UFLF/ (archival websites)
  13. 13.
    T.Y. Tou, S. Lee, K.H. Kwek, IEEE Trans. Plasma Sci. 17, 311–315 (1989)ADSCrossRefGoogle Scholar
  14. 14.
    S.P. Moo, C.K. Chakrabarty, S. Lee, IEEE Trans. Plasma Sci. 19, 515–519 (1991)ADSCrossRefGoogle Scholar
  15. 15.
    D.E. Potter, Nucl. Fusion 18, 813–823 (1978)ADSCrossRefGoogle Scholar
  16. 16.
    A. Serban, S. Lee, Plasma Sources Sci. Technol. 6, 78 (1997)ADSCrossRefGoogle Scholar
  17. 17.
    M.H. Liu, X.P. Feng, S.V. Springham, S. Lee, IEEE Trans. Plasma Sci. 26, 135 (1998)ADSCrossRefGoogle Scholar
  18. 18.
    S. Lee, P. Lee, G. Zhang, X. Feng, V.A. Gribkov, M. Liu, A. Serban, T. Wong, IEEE Trans. Plasma Sci. 26, 1119 (1998)ADSCrossRefGoogle Scholar
  19. 19.
    S. Lee, (2013), http://ckplee.home.nie.edu.sg/plasmaphysics/ (archival website)
  20. 20.
    D. Wong, P. Lee, T. Zhang, A. Patran, T.L. Tan, R.S. Rawat, S. Lee, Plasma Sources Sci. Technol. 16, 116 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    V. Siahpoush, M.A. Tafreshi, S. Sobhanian, S. Khorram, Plasma Phys. Control. Fusion 47, 1065 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    L. Soto, P. Silva, J. Moreno, G. Silvester, M. Zambra, C. Pavez, L. Altamirano, H. Bruzzone, M. Barbaglia, Y. Sidelnikov, W. Kies, Braz. J. Phys. 34, 1814 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    H. Acuna, F. Castillo, J. Herrera, A. Postal, Int. Conf. Plasma Sci. (1996), Conf. Record, p. 127Google Scholar
  24. 24.
    C. Moreno, V. Raspa, L. Sigaut, R. Vieytes, Appl. Phys. Lett. 89, 091502 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    A.E. Abdou, M.I. Ismail, A.E. Mohamed, S. Lee, S.H. Saw, R. Verma, IEEE Trans. Plasma Sci. 40(10), 2741–2744 (2012). doi: 10.1109/TPS.2012.2209682 ADSCrossRefGoogle Scholar
  26. 26.
    S. Lee, A sequential plasma focus. IEEE Trans. Plasma Sci. 19, 912–919 (1991)ADSCrossRefGoogle Scholar
  27. 27.
    S.H. Saw, M. Akel, P.C.K. Lee, S.T. Ong, S.N. Mohamad, F.D. Ismail, N.D. Nawi, K. Devi, R.M. Sabri, A.H. Bajian, J. Ali, S. Lee, J. Fusion Energ. 31, 411–417 (2012). doi: 10.1007/s10894-011-9487-z ADSCrossRefGoogle Scholar
  28. 28.
    S.H. Saw, P.C.K. Lee, R.S. Rawat, S. Lee, IEEE Trans. Plasma Sci. 37, 1276–1282 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    S. Lee, R.S. Rawat, P. Lee, S.H. Saw, J. Appl. Phys. 106, 023309 (2009)ADSCrossRefGoogle Scholar
  30. 30.
    S.H. Saw, S. Lee, Energ. Power Eng. 2(1), 65–72 (2010)CrossRefGoogle Scholar
  31. 31.
    M. Akel, S. Al-Hawat, S.H. Saw, S. Lee, J. Fusion Energ. 29(3), 223–231 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    M. Akel, S. Lee, S.H. Saw, IEEE Trans. Plasma Sci. 40, 3290–3297 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    S. Lee, S.H. Saw, R.S. Rawat, P. Lee, A. Talebitaher, A.E. Abdou, P.L. Chong, F. Roy, A. Singh, D. Wong, K. Devi, IEEE Trans. Plasma Sci. 39, 3196–3202 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    S. Lee, S.H. Saw, J. Fusion Energ. 27, 292–295 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    S. Lee, S.H. Saw, L. Soto, S.V. Springham, S.P. Moo, Plasma Phys. Control. Fusion 51, 075006 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    S. Lee, S.H. Saw, Appl. Phys. Lett. 92, 021503 (2008)ADSCrossRefGoogle Scholar
  37. 37.
    S. Lee, P. Lee, S.H. Saw, R.S. Rawat, Plasma Phys. Control. Fusion 50, 065012 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    S. Lee, Plasma Phys. Control. Fusion 50, 10500 (2008)Google Scholar
  39. 39.
    S. Lee, Appl. Phys. Lett. 95, 151503 (2009)ADSCrossRefGoogle Scholar
  40. 40.
    S. Lee, S.H. Saw, J. Ali, J. Fusion Energ. 32, 42–49 (2013). doi: 10.1007/s10894-012-9522-8 ADSCrossRefGoogle Scholar
  41. 41.
    S. Lee, S.H. Saw, J. Fusion Energ. 31, 603–610 (2012). doi: 10.1007/s10894-012-9506-8 ADSCrossRefGoogle Scholar
  42. 42.
    S. Lee, S.H. Saw, P.C.K. Lee, R.S. Rawat, H. Schmidt, Appl. Phys. Lett. 92, 111501 (2008)ADSCrossRefGoogle Scholar
  43. 43.
    S.H. Saw, S. Lee, F. Roy, P.L. Chong, V. Vengadeswaran, A.S.M. Sidik, Y.W. Leong, A. Singh, Rev. Sci. Instrum. 81, 053505 (2010)ADSCrossRefGoogle Scholar
  44. 44.
    S. Lee, S.H. Saw, R.S. Rawat, P. Lee, R. Verma, A. Talebitaher, S.M. Hassan, A.E. Abdou, M. Ismail, A. Mohamed, H. Torreblanca, S. Al Hawat, M. Akel, P.L. Chong, F. Roy, A. Singh, D. Wong, K.K. Devi, J. Fusion Energ. 31, 198–204 (2012)ADSCrossRefGoogle Scholar
  45. 45.
    S. Lee, S.H. Saw, P.C.K. Lee, R.S. Rawat, K. Devi, J. Fusion Energ. 32, 50–55 (2013). doi: 10.1007/s10894-012-9521-9 ADSCrossRefGoogle Scholar
  46. 46.
    S.H. Saw, R.S. Rawat, P. Lee, A. Talebitaher, A.E. Abdou, P.L. Chong, F. Roy Jr., J. Ali, S. Lee, SXR measurements in INTI PF operated in neon to identify typical (Normal N) profile for shots with good yield. IEEE Trans. Plasma Sci. 41(11), 3166–3172, (2013), ISSN 0093-3813. doi: 10.1109/TPS.2013.2281333 Google Scholar
  47. 47.
    S. Lee, S.H. Saw, A.E. Abdou, H. Torreblanca, J. Fusion Energ. 30, 277–282 (2011)ADSCrossRefGoogle Scholar
  48. 48.
    R.A. Behbahani, F.M. Aghamir, J. Appl. Phys. 111(4), 043304–043305 (2012)ADSCrossRefGoogle Scholar
  49. 49.
    R.A. Behbahani, F.M. Aghamir, Phys. Plasmas 18, 103302 (2011). doi: 10.1063/1.3647958 ADSCrossRefGoogle Scholar
  50. 50.
    S. Lee, S.H. Saw, Phys. Plasmas 19, 12703 (2012). doi: 10.1063/1.4766744 CrossRefGoogle Scholar
  51. 51.
    S. Lee, S.H. Saw, Phys. Plasmas 20, 062702 (2013). doi: 10.1063/1.4811650 ADSCrossRefGoogle Scholar
  52. 52.
    S. Lee, S.H. Saw, Special Edition onFusion EnergyEnergies 2010, 3, 711–737 (2010). doi: 10.3390/en3040711, Published online 12 April 2010
  53. 53.
    S.H. Saw, S. Lee, Int. J. Energy Res. 35, 81–88 (2011). doi: 10.1002/er.1758 CrossRefGoogle Scholar
  54. 54.
    S. Lee, S.H. Saw, Int. J. Energ. Res. 36(15), 1366–1374 (2012)CrossRefGoogle Scholar
  55. 55.
    S. Lee, S.H. Saw, P. Lee, R.S. Rawat, Plasma Phys. Control. Fusion 51, 105013 (2009)ADSCrossRefGoogle Scholar
  56. 56.
    S.P. Chow, S. Lee, B.C. Tan, J. Plasma Phys. 8, 21–31 (1972)ADSCrossRefGoogle Scholar
  57. 57.
    S. Al-Hawat, M. Akel, S.H. Saw, S. Lee, J. Fusion Energ. 31, 13–20 (2012)ADSCrossRefGoogle Scholar
  58. 58.
    S. Lee, S.H. Saw, H. Hegazy, J. Ali, V. Damideh, N. Fatis, H. Kariri, A. Khubrani, A. Mahasi, J. Fusion Energ. (2014). doi: 10.1007/s10894-013-9658-1
  59. 59.
    S. Lee, Aust. J. Phys. 3, 891–895 (1983)ADSCrossRefGoogle Scholar
  60. 60.
    P.L. Chong, S. Lee, S.H. Saw, J. Eng. Sci. Technol. 8(1), 27–33 (2013)Google Scholar
  61. 61.
    S. Lee, A. Serban, IEEE Trans. Plasma Sci. 24, 1101–1105 (1996)ADSCrossRefGoogle Scholar
  62. 62.
  63. 63.
    L. Spitzer, Physics of fully ionised gases, in Interscience Tracts on Physics and Astronomy, 2nd rev. (Interscience Publication, New York, 1965)Google Scholar
  64. 64.
    J.W. Shearer, Phys. Fluids 19, 1426 (1976). doi: 10.1063/1.861627 ADSCrossRefGoogle Scholar
  65. 65.
    R. Pease, Proc. Phys. Soc. 70, 11 (1957)ADSCrossRefzbMATHGoogle Scholar
  66. 66.
    S. Braginskii, Zh. Eksp. Teor. Fiz. 33, 645 (1957)Google Scholar
  67. 67.
    K. Koshelev, N. Pereira, J. Appl. Phys. 69, 21–44 (1991)ADSCrossRefGoogle Scholar
  68. 68.
    A.E. Robson, Phys. Fluid B3, 1481 (1991)ADSGoogle Scholar
  69. 69.
    N.A.D. Khattak, Anomalous Heating (LHDI) (2011). http://www.plasmafocus.net/IPFS/modelpackage/File3Appendix.pdf
  70. 70.
    J.D. Huba, 2006 Plasma Formulary pg44. http://wwwppd.nrl.navy.mil/nrlformulary/NRL_FORMULARY_07.pdf
  71. 71.
    V.A. Gribkov, A. Banaszak, B. Bienkowska, A.V. Dubrovsky, I. Ivanova-Stanik, L. Jakubowski, L. Karpinski, R.A. Miklaszewski, M. Paduch, M.J. Sadowski, M. Scholz, A. Szydlowski, K. Tomaszewski, J. Phys. D Appl. Phys. 40, 3592–3607 (2007)ADSCrossRefGoogle Scholar
  72. 72.
    S.V. Springham et al., Nukleonika 51(1), 47–53 (2006)Google Scholar
  73. 73.
    S.V. Springham, S. Lee, M.S. Rafique, Plasma Phys. Control. Fusion 42(10), 1023 (2000)ADSCrossRefGoogle Scholar
  74. 74.
    W. Kies in Laser and Plasma Technology, ed. by S. Lee, B.C. Tan, C.S. Wong, A.C. Chew, K.S. Low, H. Ahmad, Y.H. Chen, Proceedings of Second Tropical College (World Scientific, Singapore, 1988). ISBN 9971-50-767-6, p. 86–137Google Scholar
  75. 75.
    H. Herold in Laser and Plasma Technology, ed. by C.S. Wong, S. Lee, B.C. Tan, A.C. Chew, K.S. Low, S.P. Moo, Proceedings of Third Tropical College (World Scientific, Singapore, 1990). ISBN 981-02-0168-0, p. 21–45Google Scholar
  76. 76.
    A. Patran, R.S. Rawat, J.M. Koh, S.V. Springham, T.L. Tan, P. Lee, S. Lee, 31st EPS Conference on Plasma Phys. London, 2004 ECA vol 28G, P-4.213 (2004)Google Scholar
  77. 77.
    R. Verma, M.V. Roshan, F. Malik, P. Lee, S. Lee, S.V. Springham, T.L. Tan, M. Krishnan, Plasma Sources Sci. Technol. 17(4), 045020 (2008)ADSCrossRefGoogle Scholar
  78. 78.
    V. Rishi, R.S. Rawat, P. Lee, S. Lee, S.V. Springham, T.L. Tan, M. Krishnan, Phys. Lett. A 373, 2568–2571 (2009)ADSCrossRefGoogle Scholar
  79. 79.
    M. Favre, S. Lee, S.P. Moo, C.S. Wong, Plasma Sources Sci. Technol. 1(2), 122 (1992)ADSCrossRefGoogle Scholar
  80. 80.
    S.L. Yap, S.H. Lee, L.K. Lim, C.S. Wong, in Proceedings International Workshop on Plasma Computations and Applications (IWPCA2008), ed. by S.H. Saw et al. (INTI Publishing House Sdn Bhd, Malaysia, 2008). ISSN 165-0284, p. 51–54Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Institute for Plasma Focus StudiesChadstoneAustralia
  2. 2.INTI International UniversityNilaiMalaysia
  3. 3.University of MalayaKuala LumpurMalaysia

Personalised recommendations