Journal of Fusion Energy

, Volume 33, Issue 3, pp 235–241 | Cite as

Some Generalised Characteristics of the Electro-dynamics of the Plasma Focus in Its Axial Phase: Illustrated by an Application to Independantly Determine the Drive Current Fraction and the Mass Swept-Up Fraction

  • S. Lee
  • S. H. Saw
  • H. Hegazy
  • Jalil Ali
  • V. Damideh
  • N. Fatis
  • H. Kariri
  • A. Khabrani
  • A. Mahasi
Original Research


We describe the axial phase of the Mather plasma focus by two coupled equations of motion and circuit. We non-dimensionalised these equations resulting in two coupled equations which are characterised by only three scaling parameters α, β and δ which are ratios of electrical to transit times, inductances and impedances respectively. The normalised current waveform, trajectory and speed profile are unique for each combination of α, β, δ which are the ratios of characteristic times (electrical discharge vs. axial transit), inductances (tube inductance vs. static inductance) and impedances (stray resistance vs. electrical surge impedance). This leads to important information and insight into various aspects of the axial phase. In the present work we show that in a time-matched plasma focus shot we deduce the value of axial phase current fraction fc simply by measuring the calibrated voltage waveform and the uncalibrated current waveform. The scaling parameters β and δ are fixed; and by form-fitting the measured current waveform to the normalised current waveform using the value of α of the shot is determined uniquely; from which the peak current and the ratio of peak to average speed [the speed form factor (SFF)] are obtained. The average transit speed is measured by time-of-flight using the voltage upturn as indicator of end of axial phase. Then the SFF yields the peak speed. The measured voltage (back EMF), peak current and peak axial speed (all at the end of axial phase) allows the unambiguous measurement of fc. The value of the mass swept-up fraction fm is deduced from α which is the ratio of the characteristic discharge and the characteristic transit times, both deduced during the non-dimensionalisation of the equations. Analysis of a time-matched shot in the INTI PF at 15 kV, 3 Torr D2 gave fc = 0.68 and fm = 0.05.


Plasma focus equations Focus axial phase characteristics Measurement of model parameters Plasma focus back EMF 


  1. 1. Archival website. Accessed 1 Aug 2013
  2. 2.
    S. Lee, Plasma focus model yielding trajectory and structure, in Radiations in Plasmas, vol. 2, ed. by B. McNamara (World Scientific, Singapore, 1984), pp. 978–987Google Scholar
  3. 3.
    S. Lee, Radiative dense plasma focus computation package (RADPF) (2013), Archival website. Accessed 1 Aug 2013
  4. 4.
    S.H. Al-Hawat, M. Akel, S. Lee, S.H. Saw, Model parameters vs gas pressure in two different plasma focus devices operated in argon and neon. J. Fusion Energ. 31, 13–20 (2012). doi:10.1007/s10894-011-9414-3 ADSCrossRefGoogle Scholar
  5. 5.
    T.Y. Tou, S. Lee, K.H. Kwek, Nonperturbing plasma-focus measurements in the run-down phase. IEEE Trans. Plasma Sci. 17(2), 311–315 (1989)ADSCrossRefGoogle Scholar
  6. 6.
    T. Oppenländer. Ph.D. Dissertation, University of Stuttgart, Germany (1981)Google Scholar
  7. 7.
    L. Flemming, H.J. Kaeppeler, T. Oppenlander, G. Pross, P. Schilling, H. Schmidt, M. Shakhatre, M. Trunk, Plasma Phys. 22, 245–260 (1980)ADSCrossRefGoogle Scholar
  8. 8.
    S. Lee, S.H. Saw, P.C.K. Lee, R.S. Rawat, H. Schmidt, Computing plasma focus pinch current from total current measurement. Appl. Phys. Lett. 92, 111501 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    S.H. Saw, S. Lee, Scaling laws for plasma focus machines from numerical experiments. Energy Power Eng. 1, 65–72 (2010)CrossRefGoogle Scholar
  10. 10.
    S.H. Saw, S. Lee, Scaling the plasma focus for fusion energy considerations. Int. J. Energy Res. 35, 81–88 (2011)CrossRefGoogle Scholar
  11. 11.
    S. Lee, S.H. Saw, A.E. Abdou, H. Torreblanca, Characterising plasma focus devices—role of static inductance–instability phase fitted by anomalous resistance. J. Fusion Energ. 30, 277–282 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    S. Lee, Neutron yield saturation in plasma focus—a fundamental cause. Appl. Phys. Lett. 95, 151503 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    S. Lee, R.S. Rawat, P. Lee, S.H. Saw, Soft x-ray yield from NX2 plasma focus. J. Appl. Phys. 106, 023309 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    S.H. Saw, P.C.K. Lee, R.S. Rawat, S. Lee, Optimizing UNU/ICTP PFF plasma focus for neon soft X-ray operation. IEEE Trans. Plasma Sci. 37, 1276–1282 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    S. Lee, S.H. Saw, Neutron scaling laws from numerical experiments. J. Fusion Energ. 27, 292–295 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    S. Lee, S.H. Saw, L. Soto, S.P. Moo, S.V. Springham, Numerical experiments on plasma focus neutron yield versus pressure compared with laboratory experiments. Plasma Phys. Control. Fusion. 51, 075006 (2009)Google Scholar
  17. 17.
    M. Akel, S. Lee, S.H. Saw, Numerical experiments in plasma focus operated in various gases. IEEE Trans. Plasma Sci. 40(12), 3290 (2012). doi:10.1109/TPS.2012.2220863 ADSCrossRefGoogle Scholar
  18. 18.
    S. Lee, S.H. Saw, P.C.K. Lee, R.S. Rawat, K. Devi, Magnetic reynolds number and neon current sheet structure in the axial phase of a plasma focus. J. Fusion Energ. 32(1), 50–55 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    S.H. Saw, M. Akel, P.C.K. Lee, S.T. Ong, S.N. Mohamad, F.D. Ismail, N.D. Nawi, K. Devi, R.M. Sabri, A.H. Baijan, J. Ali, S. Lee, Magnetic probe measurements in INTI plasma focus to determine dependence of axial speed with pressure in neon. J. Fusion Energ. 31, 411–417 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    S. Lee, S.H. Saw, R.S. Rawat, P. Lee, A. Talebitaher, A.E. Abdou, P.L. Chong, F. Roy, A. Singh, D. Wong, K. Devi, Correlation of soft x-ray pulses with modeled dynamics of the plasma focus. IEEE Trans. Plasma Sci. 39(11), 3196–3202 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    S.H. Saw, S. Lee, F. Roy, P.L. Chong, V. Vengadeswaran, A.S.M. Sidik, Y.W. Leong, A. Singh, In-situ determination of the static inductance and resistance of a plasma focus capacitor bank. Review Sci Instrum. 81(053505) (2010)Google Scholar
  22. 22.
    S. Lee, T.Y. Tou, S.P. Moo, M.A. Elissa, A.V. Gholap, K.H. Kwek, S. Mulyodrono, A.J. Smith, Suryadi, W. Usala, M. Zakaullah, A simple facility for the teaching of plasma dynamics and plasma nuclear fusion. Am. J. Phys. 56, 62 (1988)ADSCrossRefGoogle Scholar
  23. 23.
    S. Lee, S.H. Saw, R.S. Rawat, P. Lee, R. Verma, A. Talebitaher, S.M. Hassan, A.E. Abdou, Mohamed Ismail, Amgad Mohamed, H. Torreblanca, S.H. AlHawat, M. Akel, P.L. Chong, F. Roy, A. Singh, D. Wong, K. Devi, Measurement and processing of fast pulsed discharge current in plasma focus machines. J. Fusion Energ. 31, 198–204 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    S.H. Saw, Experimental studies of a current-stepped Pinch PhD Thesis University of Malaya, Malaysia (1991)Google Scholar
  25. 25.
    S. Lee, S.H. Saw, Current-step technique to enhance plasma focus compression and neutron yield. J. Fusion Energ. 31, 603–610 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    S. Lee, S.H. Saw, J. Ali, Numerical experiments on radiative cooling and collapse in plasma focus operated in krypton. J. Fusion Energ. 32, 42–49 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    S. Lee, S.H. Saw, Plasma focus ion beam fluence and flux—scaling with stored energy. Phys. Plasmas 19, 112703 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    S. Lee, S.H. Saw, Plasma focus ion beam fluence and flux—for various gases. Phys. Plasmas 20, 062702 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • S. Lee
    • 1
    • 2
    • 3
  • S. H. Saw
    • 1
    • 2
  • H. Hegazy
    • 4
    • 5
  • Jalil Ali
    • 6
  • V. Damideh
    • 1
  • N. Fatis
    • 4
  • H. Kariri
    • 4
  • A. Khabrani
    • 4
  • A. Mahasi
    • 4
  1. 1.INTI International UniversityNilaiMalaysia
  2. 2.Institute for Plasma Focus StudiesChadstoneAustralia
  3. 3.University of MalayaKuala LumpurMalaysia
  4. 4.Physics Department, Faculty of ScienceJazan UniversityJazanSaudi Arabia
  5. 5.Plasma Physics Department, NRCAtomic Energy AuthorityInshassEgypt
  6. 6.Institute of Advanced Photonic Science, Nanotechnology Research AllianceUniversiti Teknologi MalaysiaJohor BahruMalaysia

Personalised recommendations