Journal of Fusion Energy

, Volume 32, Issue 5, pp 561–565 | Cite as

Preliminary Results of Experimental Studies from Low Pressure Inertial Electrostatic Confinement Device

  • A. S. Bölükdemir
  • Y. Akgün
  • A. Alaçakır
Original Research


In this study, Turkey’s first low pressure inertial electrostatic confinement (IEC) device, constructed at the Saraykoy Nuclear Research and Training Center (SNRTC-IEC), is introduced and the first results are reported. This device was designed for neutronic fusion studies in terms of D–D reaction. The SNRTC-IEC device consists of spherical chamber 300 mm in diameter and a grid-type spherical cathode in which high negative voltage is applied at the center of chamber. The outer surface of the device held at ground potential has 10 ports to connect the vacuum pump, high voltage load, residual gas analyzer, ion sources and other peripherals. Cathode voltage is 85 kV and it is particularly emphasized that the SNRTC-IEC device is studied at low pressure (1−10 × 10−4 mbar). The maximum total neutron production rate is measured at around 2.4 × 104 neutrons per second for the medium grid cathode.


Fusion Electrostatic confinement D–D reaction Neutron production rate 



The authors would like to thank Prof.Dr. Güneş Tanır, who is supervisor for the corresponding author, for her contributions on this work. This work was supported by the Turkish Atomic Energy Authority’s A3.H2.P2.02 project.


  1. 1.
    K.M. Subramanian, Diagnostic study of steady state advanced fuel (D–D and D-3He) fusion in an IEC device, PhD Dissertation, University of Wisconsin, (2004)Google Scholar
  2. 2.
    S. Lee, S.H. Saw, J Fusion Energ. 30, 398–403 (2011)CrossRefGoogle Scholar
  3. 3.
    Y. Akgun, F. Erdogan, A.S. Bolukdemir, E. Kurt, T. Oncu, A. Alacakir, Plasma Dev. Oper. 17(4), 293–300 (2009)CrossRefGoogle Scholar
  4. 4.
    B.B. Cipiti, The fusion of advanced fuels to produce medical isotopes using inertial electrostatic confinement, PhD Dissertation, University of Wisconsin, (2004)Google Scholar
  5. 5.
    D.C. Barnes, R.A. Nebel, L. Turner, Phys. Fluids B 5(10), 3651–3660 (1993)ADSCrossRefGoogle Scholar
  6. 6.
    R.W. Bussard, The advent of clean nuclear fusion: Superperformance space power and propulsion, 57th International Astronautical Congress (2006)Google Scholar
  7. 7.
    R.M. Meyer, S.K. Loyalka, M.A. Prelas, EEE Trans. Plasma Sci. 33(4), 1377–1394 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    R.P. Ashley, G.L. Kulcinski, J.F. Santarius, S.K. Murali, G. Piefer, B.B. Cipiti, R. Radel, J.W. Weidner, Fusion Sci. Technol. 44(2), 564–566 (2003)Google Scholar
  9. 9.
    D.R. Boris, E. Alderson, G. Becerra, D.C. Donovan, B. Egle, G.A. Emmert, L. Garrison, G.L. Kulcinski, J.F. Santarius, C. Schuff, S.J. Zenobia, Phys. Rev. E 80, 036408 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    R.L. Hirsch, J. Appl. Phys. 38, 4522 (1967)ADSCrossRefGoogle Scholar
  11. 11.
    P.T. Farnsworth, Electric discharge device for producing interaction between nuclei. U.S. Patent #3,258,402, patented June 28 (1966)Google Scholar
  12. 12.
    G.H. Miley, Nucl. Instr. Meth. Phys. Res.A 422, 16–20 (1999)ADSCrossRefGoogle Scholar
  13. 13.
    G.H. Miley, J. Nadler, T. Hochberg, Y. Gu, O. Barnouin, Fusion Technol. 19, 840–845 (1991)Google Scholar
  14. 14.
    G.H. Miley, J. Sved, Appl. Rad. Isot. 53, 779–783 (2000)CrossRefGoogle Scholar
  15. 15.
    R.A. Nebel, D.C. Barnes, Fusion Technol. 34, 28–45 (1998)Google Scholar
  16. 16.
    R.P. Ashley, G.L. Kulcinski, J.F. Santarius, S.K. Murali, G. Piefer, 18th IEEE/NPSS Symposium on Fusion Engineering, IEEE #99CH37050, (1999)Google Scholar
  17. 17.
    H. Matsuura, T. Takaki, K. Funakoshi, Y. Nakao, K. Kudo, Nucl. Fusion 40(12), 1951–1954 (2000)ADSCrossRefGoogle Scholar
  18. 18.
    M. Ohnishi, K.H. Sato, Y. Yamamoto, K. Yoshikawa, Nucl. Fusion 37, 611–619 (1997)ADSCrossRefGoogle Scholar
  19. 19.
    M. Ohnishi, C. Hoshino, K. Yoshikawa, K. Masuda, Y. Yamamoto, Rev. Sci. Instrum. 71(2), 1210–1212 (2000)ADSCrossRefGoogle Scholar
  20. 20.
    K. Yamauchi, K. Ogasawara, M. Watanabe, A. Okino, Y. Sunaga, E. Hotta, Fusion Technol. 39(3), 1182–1187 (2001)Google Scholar
  21. 21.
    M. Ohnishi, Kyoto University, Japan, private communication (2002), Overview of Japanese IEC Research Program, 4th U.S.-Japan Workshop on Inertial Electrostatic Confinement, Madison,Wisconsin (2002)Google Scholar
  22. 22.
    M.J. Park, Seoul National University, South Korea, private communication (2004), RF Plasma Ions Sources of Compact Neutron Generators, 6th U.S.-Japan Workshop on Inertial Electrostatic Confinement, Tokyo, Japan (2003)Google Scholar
  23. 23.
    V. Damideh, A. Sadighzadeh, A. Koohi, A. Aslezaeem, A. Heidarnia, N. Abdollahi, F.A. Davani, R. Damideh, J Fusion Energ 31, 109–111 (2012)CrossRefADSGoogle Scholar
  24. 24.
    E.H. Ebrahimi, R. Amrollahi, A. Sadighzadeh, M. Torabi, M. Sedaghat, R. Sabri, B. Pourshahab, V. Damideh, J Fusion Energ 32(1), 62–65 (2013). doi: 10.1007/s10894-012-9524-6 CrossRefADSGoogle Scholar
  25. 25.
    K.S. Krane, Introductory nuclear physics (Wiley, New York, 1988), pp. 529–530Google Scholar
  26. 26.
    S. Lee, Energy gain from thermonuclear fusion.
  27. 27.
    S.K. Murali, J.F. Santarius, G.L. Kulcinski, J Fusion Energ 29, 256–260 (2010)CrossRefADSGoogle Scholar
  28. 28.
    R.F. Radel, Dedection of highly enriched Uraniumand tungsten surface damage studies using a pulsed inertial electrostatic confinement fusion device, PhD Dissertation, University of Wisconsin, (2007)Google Scholar
  29. 29.
    B.J. Egle, Nuclear fusion of advanced fuels using converging focused ion beams (University of Wisconsin, PhD Dissertation, 2010)Google Scholar
  30. 30.
    J.F. Santarius, G.L. Kulcinski, R.P. Ashley, D.R. Boris, B.B. Cipiti, S.K. Murali, G.R. Piefer, R.F. Radel, T.E. Uchytil, A.L. Wehmeyer, Overview of University of Wisconsin Inertial-Electrostatic Confinement Fusion Research, 16th ANS Topical Meeting on Fusion Energy, Madison WI, (2004)Google Scholar
  31. 31.
    T. Takamatsu, K. Masuda, T. Kyunai, H. Toku, K. Yoshikawa, Nucl. Fusion 46, 142–148 (2006)ADSCrossRefGoogle Scholar
  32. 32.
    K. Masuda, K. Taruya, T. Koyama, H. Hashimoto, K. Yoshikawa, H. Toku, Y. Yamamoto, M. Ohnishi, H. Horiike, N. Inoue, Fusion Technol. 39(3), 1202–1210 (2001)Google Scholar
  33. 33.
    S. Chapman, T.G. Cowling, The mathematical theory of non-uniform gases, 3rd. edition, Cambridge University Press, ISBN 0-521-40844-X, 88 1990Google Scholar
  34. 34.
  35. 35.
    S.E. Van Bramer, Mean free path versus pressure and altitude, 1/18/98Google Scholar
  36. 36.
    G.R. Piefer, J.F. Santarius, R.P. Ashley, G.L. Kulcinski, 16th ANS Topical meeting on fusion energy (2004)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • A. S. Bölükdemir
    • 1
    • 2
  • Y. Akgün
    • 1
  • A. Alaçakır
    • 1
  1. 1.Turkish Atomic Energy Authority, Saraykoy Nuclear Research and Training CenterKazan, AnkaraTurkey
  2. 2.Department of Physics, Institute of Science and TechnologyGazi UniversityAnkaraTurkey

Personalised recommendations