Journal of Fusion Energy

, Volume 32, Issue 4, pp 480–487 | Cite as

Theoretical Study of the Endogenous Production of N-13 in 115 kJ Plasma Focus Device Using Methane Gas

  • Saeedeh Faghih Haghani
  • A. Sadighzadeh
  • A. Talaei
  • A. A. Zaeem
  • S. M. Sadat Kiai
  • A. Heydarnia
  • V. Damideh
Original Research

Abstract

Mather type plasma focus device with the bank energy of 115 kJ (40 kV, 144μF) was studied for induced activity of N-13; a short-lived radioisotope β+ emitter with 511 keV of gamma rays and has a half-life of t1/2 = 9.93 min through 12C (d, n)13N nuclear reaction. N-13 radioisotope is used in Positron Emission Tomography (PET) for imaging and treatment. In this paper endogenous production of 13N is considered. It is shown by adding 3–4 % CH4 to the chamber, the induced activity of N-13 has increased about 4 %. Our study is representative of producing 106 − 109 Bq induced activity of this SLR in IR-MPF-100 device.

Keywords

Dense plasma focus SLR N-13 production PET Endogenous production IR-MPF-100 

References

  1. 1.
    M.V. Roshan et al., Phys. Lett. A 373, 851–855 (2009)MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    A. Talaei, S.M. Sadat Kiai, A.A. Zaeem, Appl. Radiat. Isot. 68, 2218–2222 (2010)CrossRefGoogle Scholar
  3. 3.
    E. Angeli et al., Appl. Radiat. Isot. 63, 545–551 (2005)CrossRefGoogle Scholar
  4. 4.
  5. 5.
    J.S. Brzosko et al., AIP Conf. Proc. 576, 277 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    A.A. Zaeem, Investigations of plasma compression dynamics in a Filippov plasma focus for the production of PET radioisotopes, M.Sc. Thesis(Khaje Nasir University, Tehran, Iran, 2009)Google Scholar
  7. 7.
    J.S. Brzosko, V. Nardi, Phys. Lett. A 155, 2–3 (1991)CrossRefGoogle Scholar
  8. 8.
    H. Bhuyan et al., J. Phys. D Appl. Phys. 38, 1164–1169 (2005)ADSCrossRefGoogle Scholar
  9. 9.
  10. 10.
    B. Shirani, F. Abasi, J. Fusion Energ. (2012). doi:10.1007/s10894-012-9558-9
  11. 11.
    M.V. Roshan et al., IEEE Trans. Plasma Sci. 38, 3393–3397 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    A. Salehizadeh et al. J. Fusion Energ. (2012). doi: 10.1007/s10894-012-9567-8
  13. 13.
    S. Lee, Aust. J. Phys. 35, 891 (1983)ADSCrossRefGoogle Scholar
  14. 14.
    S. Lee, A. Serban, IEEE Trans. Plasma Sci. 24, 1101–1105 (1996)ADSCrossRefGoogle Scholar
  15. 15.
    A.A. Zaeem, J. Fusion Energ. 28, 268–274 (2009)CrossRefGoogle Scholar
  16. 16.
    A. Talaei, S.M. Sadat Kiai, J. Fusion Energ. 29, 427–435 (2010)CrossRefGoogle Scholar
  17. 17.
    http://www.nndc.bnl.gov/, National Nuclear data center (Brookhaven national laboratory)
  18. 18.
    M. Bellos, M.Sc. Thesis, University of Groningen, arXiv:nucl-ex/0503016vl, 20 March (2005)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Saeedeh Faghih Haghani
    • 1
    • 2
  • A. Sadighzadeh
    • 2
  • A. Talaei
    • 3
  • A. A. Zaeem
    • 2
  • S. M. Sadat Kiai
    • 2
  • A. Heydarnia
    • 2
  • V. Damideh
    • 2
  1. 1.Department of PhysicsAlzahra UniversityTehranIran
  2. 2.Plasma Physics and Nuclear Fusion Research School, Nuclear Science and Technology Research InstituteAEOITehranIran
  3. 3.Department of PhysicsUtah State UniversityLoganUSA

Personalised recommendations