Journal of Fusion Energy

, Volume 32, Issue 2, pp 278–286 | Cite as

An Energy Recovering Divertor Based on Amplification of Alfven Waves

  • D. A. BaverEmail author
Original Research


A new technique for direct power extraction from a fusion plasma is presented. This technique is designed to operate within a tokamak divertor channel without requiring plasma to cross the toroidal field coils, and is therefore termed an energy recovering divertor. The proposed technique is based on amplification of Alfven waves by ion kinetic energy, using a mechanism analogous to a free-electron laser. Presented here are a detailed description of the technique and analytic calculations of its basic mode of operation.


Plasma direct converter Divertor Tokamak Alfven waves Ponderomotive force 



This work was supported by the U.S. Department of Energy (DOE) under grant DE-FG02-97ER54392. Such support does not constitute an endorsement by DOE of the views expressed herein.


  1. 1.
    B. Lipschultz, X. Bonnin, G. Counsell, A. Kallenbach et al., Nucl. Fusion 47, 1189–1205 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    A. Loarte, B. Lipschultz, A.S. Kukushkin, G.F. Matthews, P.C. Stangeby et al., Nucl. Fusion 47, S203–S263 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    M.V. Umansky, R.H. Bulmer, R.H. Cohen, T.D. Rognlien, D.D. Ryutov, Nucl. Fusion 49, 075005 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    M. Kotschenreuther, P. Valanju, S. Mahajan, L.J. Zheng, L.D. Pearlstein, R.H. Bulmer, J. Canik, R. Maingi, Nucl. Fusion 50, 035003 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    R.F. Post, Mirror systems: fuel cycles, loss reduction and energy recovery, in Proceedings British Nuclear Energy Society Conference Nuclear Fusion Reactors (Culham Laboratory, Culham, 1969, UKAEA, 1970), pp. 88–111Google Scholar
  6. 6.
    A.H. Futch Jr., J.P. Holdren, J. Killeen, A.A. Mirin, Plasma Phys. 14, 211 (1972)ADSGoogle Scholar
  7. 7.
    R.W. Moir, Energy Technology Handbook (McGraw Hill, 1977), pp. 5150–5154Google Scholar
  8. 8.
    R.W. Moir, W.L. Barr, “Venetian-blind” direct energy converter for fusion reactors. Nucl. Fusion 13, 35 (1973)Google Scholar
  9. 9.
    Y. Ogawa et al., A new poloidal-bundle divertor for a spherical tokamak. Fusion Eng. Des. 48, 339–345 (2000)Google Scholar
  10. 10.
    R.W. Moir, W. Barr, G.A. Carlson, Plasma physics and controlled nuclear fusion research, in Proceedings 5th International Conference Plasma Physics and Controlled Nuclear Fusion Research, vol. 3 (IAEA, Tokyo, 1974), p. 583Google Scholar
  11. 11.
    G.L. Kulcinski, G.A. Emmert, J.P. Blanchard, L.A. El-Guebaly, H.Y. Khater, C.W. Maynard, E.A. Mogahed, J.F. Santarius, M.E. Sawan, I.N. Sviatoslavsky, L.J. Wittenberg, Apollo-L3, an advanced fuel fusion power reactor utilizing direct and thermal energy conversion. Fusion Technol. 19, 791 (1991)Google Scholar
  12. 12.
    P.C. Stangeby, The Plasma Boundary of Magnetic Fusion Devices. (Institute of Physics Publishing, Bristol, 2000)CrossRefGoogle Scholar
  13. 13.
    H. Motz, C.J.H. Watson, Adv. Electron. 23, 153 (1967)Google Scholar
  14. 14.
    J.R. Cary, A.N. Kaufman, Phys. Fluids 24, 1238 (1981)ADSzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Lodestar Research CorporationBoulderUSA

Personalised recommendations