Journal of Fusion Energy

, Volume 32, Issue 2, pp 189–195 | Cite as

Analytical Study of Quantum Magnetic and Ion Viscous Effects on p11B Fusion in Plasma Focus Devices

Original Research

Abstract

In this article we studied the feasibility of proton-boron (p11B) fusion in plasmoids produced by plasma pinch devices like plasma focus facility as commercially sources of energy. In plasmoids fusion power for 76 keV < Ti < 1,500 keV exceeds bremsstrahlung loss (W/Pb = 5.39). In such situation gain factor and the ratio of Te to Ti for a typical 150 kJ plasma focus will be 7.8 and 4.8 respectively. Also with considering the ion viscous heating effect W/Pb and Ti/Te will be 2.7 and 6 respectively. Strong magnetic field will reduces ion–electron collision rate due to quantization of electron orbits. While approximately there is no change in electron–ion collision rate, The effect of quantum magnetic field makes ions much hotter than electrons which enhances the fraction of fusion power to bremsstrahlung loss.

Keywords

Plasmoids p11B fuel Ion viscous heating Quantum magnetic field Plasma focus 

References

  1. 1.
    S. Son, Reaction rates and other processes in dense plasma, UMI Number: 3180070, (2005)Google Scholar
  2. 2.
    E.J. Lerner et al., Theory and Experimental Program for p-B11 Fusion with the Dense Plasma Focus. J. Fusion Energ. 30, 367–376 (2011)CrossRefGoogle Scholar
  3. 3.
    J.R. McNALLY, Simple physical model for the effect of a magnetic field on the coulomb logarithm for test ions slowing down on electrons in a plasma. Nucl. Fusion 15, 344 (1975)ADSCrossRefGoogle Scholar
  4. 4.
    J.M. Martinez-Val et al., Fusion burning waves in proton-boron- 11 plasmas. Phys. Lett. A 216, 142–152 (1996)ADSCrossRefGoogle Scholar
  5. 5.
    E.J. Lerner, R.E. Terry, Advances towards PB11 fusion with the dense plasma focus, Current Trends in International Fusion Research. Proceeding of the Sixth Symposium Google Scholar
  6. 6.
    S. Son, N.J. Fisch, Controlled fusion with hot-ion mode in degenerate plasma. Phys. Lett. A 356, 65–71 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    R. Thomas et al., Advancements in Dense Plasma Focus (DPF) for Space Propulsion. AIP Conf. Proc. 746, 536–543 (2005). doi:10.1063/1.1867170 ADSCrossRefGoogle Scholar
  8. 8.
    E.J. Lerner, Prospects for PB11 fusion with the dense plasma focus: new results, Current Trends in International Fusion Research—5th SymposiumGoogle Scholar
  9. 9.
    M.A. Alabraba, et al., Energy Distribution in the Plasma Focus, European J. Sci. Res., ISSN 1450-216X 22(4):553–561, (2008)Google Scholar
  10. 10.
    R.W. Nelson et al., Nonthermal cyclotron emission from low-luminosity accretion on to magnetic neutron stars. Astrophys. J. 418, 874–893 (1993)ADSCrossRefGoogle Scholar
  11. 11.
    J.W. Mather in Methods of Experimental Physics, vol. 9B, Plasma Physics, Academic Press, pp. 187–248 (1970)Google Scholar
  12. 12.
    J.W. Mather, Formation of high-density deuterium plasma focus. Phys. Fluids 8(2), 366–377 (1965)ADSCrossRefGoogle Scholar
  13. 13.
    H.R. Yousefi, Simulations of effective heating in heavy-ion beam-fusion: high density plasmas in plasma focus devices. Phys. Lett. A 373, 2360–2363 (2009)ADSMATHCrossRefGoogle Scholar
  14. 14.
    K. Niu, K. Suqiura, Nuclear fusion (Cambridge University Press, New York, 2009)Google Scholar
  15. 15.
    M.G. Haines et al., Ion Viscous Heating in a Magnetohydrodynamically Unstable Z Pinch at Over 2 × 109 Kelvin. PRL 96, 075003 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    J.P. Freidberg, Plasma physics and Fusion energy (Cambridge University press, New York, 2007)CrossRefGoogle Scholar
  17. 17.
    S. Lee, A. Serban, Dimensions and lifetime of the plasma focus. IEEE Transactions on plasma science, 24(3), 1101–1105 (1996)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Amirkabir University of TechnologyTehranIran

Personalised recommendations