Journal of Fusion Energy

, Volume 32, Issue 1, pp 50–55 | Cite as

Magnetic Reynolds Number and Neon Current Sheet Structure in the Axial Phase of a Plasma Focus

Original Research

Abstract

The Magnetic Reynolds Number (MRN) in neon is computed as a function of Neon shock speed. The magnetic field profiles at various positions in the axial run down phase of the INTI Plasma Focus device are measured over a range of pressures from 2 to 20 Torr. These profiles are assessed for good electromagnetic coupling including measuring the current per unit current sheet thickness as a comparative measure of current sheet diffusion. It was found that at an axial current sheet speed of over 3.5 cm/μs (corresponding to MRN > 15), the current sheet has a compact profile with current density of 55 kA/cm of sheet thickness whereas at speeds below 2.8 cm/μs (corresponding to MRN < 10) the profile is more diffuse with current density less than 30 kA/cm of sheet thickness. Based on these studies it is proposed to take a speed of 3 cm/μs corresponding to an MRN of 10 as the minimum speed of neon current sheet below which the electromagnetic coupling begins to weaken.

Keywords

Magnetic Reynold Number Shock speed Plasma focus device Current sheet diffusion 

References

  1. 1.
    S. Lee, P. Lee, G. Zhang, X. Feng, V.A. Gribkov, L. Mahe, A. Serban, T.K.S. Wong, IEEE Trans. Plasma Sci. 26, 1119 (1998)ADSCrossRefGoogle Scholar
  2. 2.
    D. Wong, A. Patran, T.L. Tan, R.S. Rawat, P. Lee, IEEE Trans. Plasma Sci. 32, 2227 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    Y. Kato, I. Ochiai, Y. Watanabe, S. Murayama, J. Vac. Sci. Technol. B 6, 195 (1988)CrossRefGoogle Scholar
  4. 4.
    F.N. Beg, I. Ross, A. Lorena, J.F. Worley, A.E. Dangor, M.G. Hanies, J. Appl. Phys. 88, 3225 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    R.S. Rawat, T. Zhang, G.J. Lim, W.H. Tan, S.J. Ng, A. Patran, S.M. Hassan, S.V. Springham, T.L. Tan, M. Zakaullah, S. Lee, P. Lee, J. Fusion Energ. 23, 49 (2004)CrossRefGoogle Scholar
  6. 6.
    V.A. Gribkov, A. Srivastava, P.L.C. Keat, V. Kudryashov, S. Lee, IEEE Trans. Plasma Sci. 30, 1331 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    S.H. Saw, P.C.K. Lee, R.S. Rawat, S. Lee, IEEE Transc. Plasma Sci. 37, 1276 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    S. Lee, R.S. Rawat, P. Lee, S.H. Saw, J. Appl. Phys. 106, 023309 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    D. Wong, P. Lee, T. Zhang, A. Patran, T.L. Tan, R.S. Rawat, S. Lee, Plasma Sour. Sci. Tech. 16, 116 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    S. Lee, S.H. Saw, Abdelmagid, A. Elfetouri, A.M. Shengher, E.O. Shummaki, N.A. Hassan, J. Fiz. Malaysia 12, 25–29 (1991)Google Scholar
  11. 11.
    L. Spitzer, Physics of Fully Ionized Gases, 2nd edn. (Interscience, New York, 1962)Google Scholar
  12. 12.
    R.A. Gross, in The Physics of Strong Shock Waves in Gases in Physics of High Energy Density ed. by P. Caldirola, H. Knoepfel (Academic Press, New York, 1971)Google Scholar
  13. 13.
    S. Lee, Aust. J. Phys. 36, 891–895 (1983)ADSGoogle Scholar
  14. 14.
    S. Lee, Radiative Dense Plasma Focus Computation Package: RADPF. (2011) http://www.plasmafocus.net
  15. 15.
    S. Lee, M. Eissa, A.V. Gholap, K.H. Kwek, S. Mulyodrono, S. Sapru, A.J. Smith, T.Y. Suryadi, W. Tou, C.S.Wong Usada, Mohammad Zakaullah, Singapore J. Phys. 3, 75–82 (1986)Google Scholar
  16. 16.
    S.H. Saw, S. Lee, F. Roy, P.L. Chong, V. Vengadeswaran, A.S.M. Sidik, Y.W. Leong, A. Singh, Rev. Sci. Instrum. 81, 053505 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • S. Lee
    • 1
    • 2
  • S. H. Saw
    • 1
    • 2
  • P. Lee
    • 3
  • R. S. Rawat
    • 3
  • K. Devi
    • 1
  1. 1.INTI International UniversityNilaiMalaysia
  2. 2.Institute for Plasma Focus StudiesChadstoneAustralia
  3. 3.National Institute of EducationNanyang Technological UniversitySingaporeSingapore

Personalised recommendations