Journal of Fusion Energy

, Volume 31, Issue 6, pp 603–610 | Cite as

Current-Step Technique to Enhance Plasma Focus Compression and Neutron Yield

Original Research


A current-step technique is applied to the plasma focus by modifying the Lee Model code, incorporating a current-step bank to add current to the focus pinch at the time of the current dip. For a 50 kV, 1 MJ, 6 μs rise-time bank, the current-step from a 200 kV, 0.4 MJ, 0.8 μs rise-time bank maintains the pinch current at 2.2 MA, enhances compression by 1.9 and increases the neutron yield from 2.5 × 1012 to 1.03 × 1013. The increase is attributed mainly to the step nature of the current which favorably shifts the end-point of compression; rather than to the scaling in terms of energy or current.


Current-step plasma focus Plasma focus modeling Focus pinch compression enhancement Neutron enhancement technique Plasma focus new technology 


  1. 1.
    S. Lee, An energy-consistent snow-plough model for pinch design. J. Phys. D Appl. Phys. 16, 2463–2469 (1983)ADSCrossRefGoogle Scholar
  2. 2.
    S. Lee, Radius ratios of argon pinches. Aust. J. Phys. 36, 891–895 (1983)ADSGoogle Scholar
  3. 3.
    S. Lee, A current-stepping technique to enhance pinch compression. J. Phys. D Appl. Phys. 17, 733–739 (1984)ADSCrossRefGoogle Scholar
  4. 4.
    S.H. Saw, S. Lee, C.S. Wong, in A Current-Stepping Technique to Enhance Pinch Compressionan Experimental Study in Small Plasma Physics Experiments (II), ed. by S. Lee, P.H. Sakanaka (World Scientific, Singapore, 1990), pp. 289–295, ISBN 981-02-0285-7Google Scholar
  5. 5.
    S.H. Saw, Experimental Studies of a Current-Stepped Pinch. PhD Thesis, Universiti Malaya, Malaysia, 1990Google Scholar
  6. 6.
    S. Lee, Density ratios in compressions driven by radiation pressure. Laser Part. Beams 6, 597–606 (1988)ADSCrossRefGoogle Scholar
  7. 7.
    A. Bernard, H. Bruzzone, P. Choi, H. Chuaqui, V. Gribkov, J. Herrera, K. Hirano, A. Krejci, S. Lee, C. Luo, F. Mezzetti, M. Sadowski, H. Schmidt, K. Ware, C.S. Wong, V. Zoita, Scientific status of plasma focus research. Mosc. J. Phys. Soc. 8, 93–170 (1998)Google Scholar
  8. 8.
    V.A. Gribkov, A. Banaszak, B. Bienkowska, A.V. Dubrovsky, I. Ivanova-Stanik, L. Jakubowski, L. Karpinski, R.A. Miklaszewski, M. Paduch, M. Sadowski, M. Scholz, A. Szydlowski, K. Tomaszewski, Plasma dynamics in the PF-1000 device under full scale energy storage: II. Fast electron and ion characteristics versus neutron emission parameters and gun optimization perspectives. J. Phys. D Appl. Phys. 40(12), 3592–3607 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    S. Lee, Plasma focus model yielding trajectory and structure, in Radiations in Plasmas, vol. II, ed. by B. McNamara (World Scientific, Singapore, 1984), pp. 978–987Google Scholar
  10. 10.
    S. Lee, T.Y. Tou, S.P. Moo, M.A. Eissa, A.V. Gholap, K.H. Kwek, S. Mulyodrono, A.J. Smith, S. Suryadi, W. Usada, M. Zakaullah, A simple facility for the teaching of plasma dynamics and plasma nuclear fusion. Am. J. Phys. 56(1), 62–68 (1988)ADSCrossRefGoogle Scholar
  11. 11.
    T.Y. Tou, S. Lee, K.H. Kwek, Non perturbing plasma focus measurements in the run-down phase. IEEE Trans. Plasma Sci. 17(2), 311–315 (1989)ADSCrossRefGoogle Scholar
  12. 12.
    S. Lee, A sequential plasma focus. IEEE Trans. Plasma Sci. 19(5), 912–919 (1991)ADSCrossRefGoogle Scholar
  13. 13.
    J. Ali, Development and studies of a small plasma focus. Ph.D. Dissertation, Universiti Teknologi Malaysia, Malaysia, 1990Google Scholar
  14. 14.
    S.P. Moo, C.K. Chakrabarty, S. Lee, An investigation of the ion beam of a plasma focus using a metal obstacle and a deuterated target. IEEE Trans. Plasma Sci. 19, 515–519 (1991)ADSCrossRefGoogle Scholar
  15. 15.
    D.E. Potter, The formation of high-density z-pinches. Nucl. Fusion 18, 813–823 (1978)ADSCrossRefGoogle Scholar
  16. 16.
    M. Liu, Soft X-Rays from Compact Plasma Focus. Ph.D. dissertation, NIE, Nanyang Technological Univ., Singapore, 2006. ICTP Open Access Archive [online]. Available:
  17. 17.
    S. Bing, Plasma Dynamics and X-Ray Emission of the Plasma Focus. Ph.D. dissertation, NIE, Nanyang Technological Univ., Singapore, 2000. ICTP Open Access Archive [online]. Available:
  18. 18.
    G. Zhang, Plasma Soft X-Ray Source for Microelectronics Lithography. PhD dissertation, NIE, Nanyang Technological Univ Singapore, 1999Google Scholar
  19. 19.
    A. Serban, S. Lee, Experiments on speed-enhanced neutron yield from a small plasma focus. J. Plasma Phys. 60(1, pt. 1), 3–15 (1998)ADSCrossRefGoogle Scholar
  20. 20.
    M.H. Liu, X.P. Feng, S.V. Springham, S. Lee, Soft X-ray measurement in a small plasma focus operated in neon. IEEE Trans. Plasma Sci. 26(2), 135–140 (1998)ADSCrossRefGoogle Scholar
  21. 21.
    S. Lee in Twelve Years of UNU/ICTP PFFa Review (Abdus Salam ICTP, Trieste, 1998), pp. 5–34. IC/98/231, ICTP Open Access Archive [online]. Available:
  22. 22.
    S. Lee, A. Serban, Dimensions and lifetime of the plasma focus pinch. IEEE Trans. Plasma Sci. 24(3), 1101–1105 (1996)ADSCrossRefGoogle Scholar
  23. 23.
    S. Lee, Scaling of the Plasma Focus-Viewpoint from Dynamics. International Plasma Focus Symposium, Kudowa, July 1998Google Scholar
  24. 24.
    S. Lee, Characterising the plasma focus pinch and speed enhancing the neutron yield. In First Cairo Conference on Plasma Physics & Applications, 1115 Oct 2004. International Cooperation Bilateral Seminars (vol. 34). Forschungszentrum Juelich GmbH, Juelich, pp. 27–33. ISBN 3-89336-374-2Google Scholar
  25. 25.
    S. Lee, [online]. Radiative dense plasma focus computation package: RADPF (2011). Available:
  26. 26.
    M. Akel, S. Al-Hawat, S. Lee, Pinch current and soft X-ray yield limitation by numerical experiments on nitrogen plasma focus. J. Fusion Energ. 29, 94–99 (2010)CrossRefGoogle Scholar
  27. 27.
    S. Lee, S.H. Saw, P. Lee, R.S. Rawat, Numerical experiments on neon plasma focus soft X-rays scaling. Plasma Phys. Control. Fusion, 51, 105013 (8 pp) (2009)Google Scholar
  28. 28.
    M. Akel, S. Al-Hawat, S. Lee, Numerical experiments on soft X-ray emission optimization of nitrogen plasma in 3 KJ plasma focus SY-1 using modified lee model. J. Fusion Energ. 28, 355–363 (2009)CrossRefGoogle Scholar
  29. 29.
    M. Akel, S. Al-Hawat, S.H. Saw, S. Lee, Numerical experiments on oxygen soft X-ray emissions from low energy plasma focus using Lee model. J. Fusion Energ. 29, 223–231 (2010)CrossRefGoogle Scholar
  30. 30.
    S. Lee, P. Lee, R.S. Rawat, S.H. Saw, Soft X-ray yield from NX2 plasma focus. J. Appl. Phys. 106, 023 309 (2009)Google Scholar
  31. 31.
    S.H. Saw, P.C.K. Lee, R.S. Rawat, S. Lee, Optimizing UNU/ICTP PFF plasma focus for neon soft X-ray operation. IEEE Trans Plasma Sci 37, 1276–1282 (2009)ADSCrossRefGoogle Scholar
  32. 32.
    S.V. Springham, S. Lee, M.S. Rafique, Correlated deuteron energy spectra and neutron yield for a 3 kJ plasma focus. Plasma Phys. Control. Fusion 42(10), 1023–1032 (2000)ADSCrossRefGoogle Scholar
  33. 33.
    M.A. Mohammadi, S. Sobhanian, C.S. Wong, S. Lee, P. Lee, R.S. Rawat, The effect of anode shape on neon soft X-ray emissions and current sheath configuration in plasma focus device. J. Phys. D Appl. Phys. 42(4), 045 203 (10 pp) (2009)Google Scholar
  34. 34.
    S. Lee, P. Lee, G. Zhang, X. Feng, V.A. Gribkov, M. Liu, A. Serban, T. Wong, High rep rate high performance plasma focus as a powerful radiation source. IEEE Trans. Plasma Sci. 26(4), 1119–1126 (1998)ADSCrossRefGoogle Scholar
  35. 35.
    S.H. Saw, S. Lee, F. Roy, P.L. Chong, V. Vengadeswaran, A.S.M. Sidik, Y.W. Leong, A. Singh, In situ determination of the static inductance and resistance of a plasma focus capacitor bank. Rev. Sci. Instrum. 81, 053505 (2010)ADSCrossRefGoogle Scholar
  36. 36.
    D. Wong, P. Lee, T. Zhang, A. Patran, T.L. Tan, R.S. Rawat, S. Lee, An improved radiative plasma focus model calibrated for neon filled NX2 using a tapered anode. Plasma Sources Sci. Technol. 16(1), 116–123 (2007)ADSCrossRefGoogle Scholar
  37. 37.
    E.P. Bogolyubov, V.D. Bochkov, V.A. Veretennikov, L.T. Vekhoreva, V.A. Gribkov, A.V. Dubrovskii, Y.P. Ivanov, A. Isakov, O.N. Krokhin, P. Lee, S. Lee, V.Y. Nikulin, A. Serban, P.V. Silin, X. Feng, G.X. Zhang, A powerful soft X-ray source for X-ray lithography based on plasma focusing. Phys. Scr. 57(4), 488–494 (1998)ADSCrossRefGoogle Scholar
  38. 38.
    V. Siahpoush, M.A. Tafreshi, S. Sobhanian, S. Khorram, Adaptation of Sing Lee’s model to the Filippov type plasma focus geometry. Plasma Phys. Control. Fusion 47, 1065–1075 (2005)ADSCrossRefGoogle Scholar
  39. 39.
    S. Lee, (online) Radiative Dense Plasma Focus Computation Package: RADPF, 2011.
  40. 40.
    S. Lee, S.H. Saw, Neutron scaling laws from numerical experiments. J. Fusion Energ. 27, 292–295 (2008)CrossRefGoogle Scholar
  41. 41.
    S. Lee, Current and neutron scaling for Megajoule plasma focus machines. Plasma Phys. Control. Fusion, 50(10), 105 005 (14 pp) (2008)Google Scholar
  42. 42.
    S. Lee, Neutron yield saturation in plasma focus-a fundamental cause. Appl. Phys. Lett. 95, 151 503 (published online 15 Oct 2009)Google Scholar
  43. 43.
    S. Lee, S.H. Saw, L. Soto, S.P. Moo, S.V. Springham, Numerical experiments on plasma focus neutron yield versus pressure compared with laboratory experiments. Plasma Phys. Control. Fusion 51, 075 006 (11 pp) (2009)Google Scholar
  44. 44.
    S. Lee, S.H. Saw, P.C.K. Lee, R.S. Rawat, H. Schmidt, Computing plasma focus pinch current from total current measurement. Appl. Phys. Lett. 92(11), 111 501 (2008)Google Scholar
  45. 45.
    S. Lee, S.H. Saw, Pinch current limitation effect in plasma focus. Appl. Phys. Lett. 92(2), 021 503 (2008)Google Scholar
  46. 46.
    S. Lee, P. Lee, S.H. Saw, R.S. Rawat, Numerical experiments on plasma focus pinch current limitation. Plasma Phys. Control. Fusion 50(6), 065 012 (8 pp) (2008)Google Scholar
  47. 47.
    S. Lee, Radiative Dense Plasma Focus Computation Package: RADPF, 2011.
  48. 48.
    S.P. Chow, S. Lee, B.C. Tan, Current sheath studies in a co-axial plasma focus gun. J. Plasma Phys. 8, 21–31 (1972)ADSCrossRefGoogle Scholar
  49. 49.
    S. Al-Hawat, M. Akel, S. Lee, S.H. Saw, Model parameters vs gas pressure in two different plasma focus devices operated in Argon and Neon. J. Fusion Energ. 31, 13–20 (2012)CrossRefGoogle Scholar
  50. 50.
    S.H. Saw, S. Lee, Scaling the plasma focus for fusion energy considerations. Int. J. Energy Res. 35, 81–88 (2011)CrossRefGoogle Scholar
  51. 51.
    S.H. Saw, S. Lee, Scaling laws for plasma focus machines from numerical experiments. Energy Power Eng. 1, 65–72 (2010)CrossRefGoogle Scholar
  52. 52.
    S. Lee, S.H. Saw, A.E. Abdou, H. Torreblanca, Characterising plasma focus devices—role of static inductance—instability phase fitted by anomalous resistance. J Fusion Energ. 30, 277–282 (2011)CrossRefGoogle Scholar
  53. 53.
    S. Lee, S.H. Saw, Nuclear fusion energy—mankind’s giant step forward. J. Fusion Energ. 30, 398–403 (2011)CrossRefGoogle Scholar
  54. 54.
    S. Lee, S.H. Saw, Nuclear Fusion Energythe Role of the Plasma Focus. Keynote address at International Workshop on Plasma Science and Applications 27–28 Oct 2011, Tehran, IranGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.INTI International UniversityNilaiMalaysia
  2. 2.Institute for Plasma Focus StudiesChadstoneAustralia

Personalised recommendations