Journal of Fusion Energy

, Volume 31, Issue 4, pp 341–345

Dependence of Potential Well Depth on the Magnetic Field Intensity in a Polywell Reactor

  • F. Kazemyzade
  • H. Mahdipoor
  • A. Bagheri
  • S. Khademzade
  • E. Hajiebrahimi
  • Z. Gheisari
  • A. Sadighzadeh
  • V. Damideh
Original Research

Abstract

Using OOPIC-Pro assisted-two dimensional simulation we have considered the dependencies of the electron and ion densities, as well as the central electric potential on the magnetic-field intensity in the Polywell fusion reactor. It is shown that the potential well depth increases with decreasing the magnetic intensity, while much narrower well width (thus more effective deuteron trapping) is achieved with increasing the magnetic field intensity. The results obtained can be employed to adjust the magnetic field intensities at which more effective electron confinement, thus more effective ion-flux convergence, is expected. Furthermore, this study can be used to reach the optimized conditions of the reactor operation as well as to relate to the next generation fusion fuels.

Keywords

Polywell fusion reactor Particle-in-cell code Negative potential well (NPW) Magnetic field intensity 

Abbreviation

NPW

Negative potential well

References

  1. 1.
    R.W. Bussard, Fusion Technol. 19, 273 (1991)Google Scholar
  2. 2.
    K. Noborio, Y. Yamamoto, Y. Ueno, S. Konishi, in Proceedings of 21th IEEE/NPSS Symposium on Fusion Engineering, Knoxville, Tennessee, USA (2005)Google Scholar
  3. 3.
    T. Takamatsu K. Masuda, S. Ogawa, H. Toku, K. Yoshikawa, in Proceedings of 21th IEEE/NPSS Symposium on Fusion Engineering, Knoxville, Tennessee, USA (2005)Google Scholar
  4. 4.
    K. Tomiyasu, K. Yokoyama, M. Watanabe, E. Hotta, Fusion Eng. Design 85, 728 (2010)CrossRefGoogle Scholar
  5. 5.
    Y.K. Kurilenkov et al., J. Phys. A: Math. Theor 42, 214041 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    V. Damideh et al., J Fusion Energ. Online first, 11 June 2011 (2011)Google Scholar
  7. 7.
    J.G. Rogers, U. S. Patent No. Modular Apparatus for Confining a Plasma, US20100284501, (2010)Google Scholar
  8. 8.
    M. Carr, J. Khachan, Phys. Plasmas 17, 052510 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    D.L. Bruhwiler, R.E. Giacone, J.R. Cary, J.P. Verboncoeur, P. Mardahl, E. Esarey, W.P. Leemans, B.A. Shadwick, Phys. Rev. ST Accel. Beams 4, 101302 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    S.O. Cetiner, P. Stoltz, P. Messmer, J.-L. Cambier, J. Appl. Phys. 103, 023304 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    V.A. Shklyaev, V.V. Ryzhov, Tech. Phys. Lett. 35, 518 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    B.K. Law, C.K. Koo, J.T.L. Thong, Appl. Phys. Lett. 91, 243108 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    A.M. Cook et al., Phys. Rev. Lett. 103, 095003 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    R.W. Bussard, The advent of clean nuclear fusion: superperformance space power and propulsion, in 57th International Astronautical Congress (IAC, Valencia, Spain, 2006)Google Scholar
  15. 15.
    J.G. Rogers, PIC Simulation of Polywell, in 11th US-Japan Workshop on Inertial Electrostatic Confinement Fusion (Madison, Wisconsin, USA, 2009)Google Scholar
  16. 16.
    J.D. Huba, Revised NRL Plasma Formulary (2002), http://wwwppd.nrl.navy.mil/nrlformulary/NRL_FORMULARY_02.pdf. Accessed 10 Jul 2011

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • F. Kazemyzade
    • 1
  • H. Mahdipoor
    • 1
  • A. Bagheri
    • 1
  • S. Khademzade
    • 1
  • E. Hajiebrahimi
    • 1
  • Z. Gheisari
    • 1
  • A. Sadighzadeh
    • 1
  • V. Damideh
    • 1
  1. 1.Plasma Physics and Nuclear Fusion Research SchoolNuclear Science and Technology Research Institute, AEOITehranIran

Personalised recommendations