Journal of Fusion Energy

, Volume 31, Issue 2, pp 198–204 | Cite as

Measurement and Processing of Fast Pulsed Discharge Current in Plasma Focus Machines

  • S. Lee
  • S. H. Saw
  • R. S. Rawat
  • P. Lee
  • R. Verma
  • A. Talebitaher
  • S. M. Hassan
  • A. E. Abdou
  • Mohamed Ismail
  • Amgad Mohamed
  • H. Torreblanca
  • Sh. Al Hawat
  • M. Akel
  • P. L. Chong
  • F. Roy
  • A. Singh
  • D. Wong
  • K. Devi
Original Research

Abstract

The fast pulsed electric discharge current drives all physical processes in the plasma focus device; in turn all physical processes in the focus affect the current waveform. Thus the discharge current waveform is the most important indicator of plasma focus performance. This underlies the importance of properly measuring, processing and interpreting the discharge current waveform. This paper reports the measurement of fast pulsed discharge current by the Rogowski coil, in two different modes: the current transformer, “I” mode, and current derivative, “Idot” mode. The processing and interpretation of recorded current waveform to obtain useful information about the physical processes in the plasma focus device are discussed. The current transformer with a large number of turns and a sub-1 Ohm terminator has good high frequency response, necessary for the sharp current dip region when dI/dt exceeds 2 × 1011 A/s. However the signal is “noisy” in the current dip region. Several methods to extract the current dip from the noise are discussed and examples of how low pass filters affect the signals are shown. The dI/dt coil, the Rogowski coil in “Idot” mode, with a few turns terminated by 50-Ohm is also described. Integrating the 1 GSa/s digital waveform does remove the high frequency noise components, yet the extracted waveform shows sharp angular features indicative of the retention of short-time features. This makes the dI/dt coil superior to the current transformer. A 7-turn coil is tested against the Lee Model code and found to be suitable to measure the plasma focus discharge current.

Keywords

Pulsed current measurements Plasma focus Rogowski coil Lee Model code 

References

  1. 1.
    S.H. Saw, S. Lee, F. Roy, P.L. Chong, V. Vengadeswaran, A.S.M. Sidik, Y.W. Leong, A. Singh, Rev. Sci. Instrum. 81(5), 053505 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    M. Krishnan, B. Bures, R. Madden, F. Blobner, K.W. Elliott, in International Conference on Applications of Nuclear Techniques, vol. 1194, ed. by K. BharuthRam (AIP Conference Proceeding, Crete, Greece, 2009), pp. 56–68Google Scholar
  3. 3.
    R. Shukla, S.K. Sharma, P. Banerjee, R. Das, P. Deb, T. Prabahar, B.K. Das, B. Adhikary, A. Shyam, Rev. Sci. Instrum. 81(8), 083501 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    S. Al-Hawat, M. Soukieh, M. Abou Kharoub, W. Al-Sadat, Vacuum 84(7), 907–912 (2010)Google Scholar
  5. 5.
    L. Soto, C. Pavez, J. Moreno, M. Barbaglia, A. Clausse, Plasma Sour. Sci. Technol. 18(1), 015007 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    R. Verma, R.S. Rawat, P. Lee, S.V. Springham, T.L. Tan, M. Krishnan, Journal of Physics D-Applied Physics 42(23), 235203 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    R.K. Rout, P. Mishra, A.M. Rawool, L.V. Kulkarni, S.C. Gupta, J. Phys. D-Appl. Phys. 41(20) (2008)Google Scholar
  8. 8.
    S. Lee, A. Serban, IEEE Trans. Plasma Sci. 24(3), 1101–1105 (1996)Google Scholar
  9. 9.
    S. Lee, in Radiations in Plasmas, Spring College on Radiations in Plasmas, Trieste, Italy, May 1983, ed by B. McNamara (World Scientific, Singapore, 1984), pp. 978–987Google Scholar
  10. 10.
    S. Lee, IEEE Trans. Plasma Sci. 19(5), 912–919 (1991)Google Scholar
  11. 11.
    S. Lee, Radiative dense plasma focus computation package: RADPF; http://www.intimal.edu.my/school/fas/UFLF/File1RADPF.htm and http://www.plasmafocus.net/IPFS/modelpackage/File1RADPF.htm (2010)
  12. 12.
    M.H. Liu, PhD Thesis, Soft X-rays from Compact Plasma Focus, Nanyang Technological University, 1996Google Scholar
  13. 13.
    S. Bing, PhD Thesis, Plasma dynamics and x-ray emission of the plasma focus, Nanyang Technological University (ICTP Open Access Archive: http://eprints.ictp.it/99/), 2000
  14. 14.
    M. Akel, S. Al-Hawat, S.H. Saw, S.Lee, J. Fusion Energ. 29(3), 223–231 (2010)Google Scholar
  15. 15.
    V. Siahpoush, M.A. Tafreshi, S. Sobhanian, S. Khorram, Plasma Phys. Controlled Fusion 47(7), 1065–1075 (2005)Google Scholar
  16. 16.
    S. Lee, T.Y. Tou, S.P. Moo, M.A. Eissa, A.V. Gholap, K.H. Kwek, S. Mulyodrono, A.J. Smith, S. Suryadi, W. Usada, M. Zakaullah, Am. J. Phys. 56(1), 62–68 (1988)Google Scholar
  17. 17.
    S. Lee, Twelve Years of UNU/ICTP PFF-A Review; IC 98 (231) Abdus Salam ICTP, Miramare, Trieste; ICTP OAA: http://eprints.ictp.it/31/(1998)
  18. 18.
    A. Serban, S. Lee, J. Plasma Phys. 60, 3–15 (1998)ADSCrossRefGoogle Scholar
  19. 19.
    S.H. Saw, P.C. K. Lee, R.S. Rawat, S. Lee, IEEE Trans. Plasma Sci. 37(7), 1276–1282 (2009)Google Scholar
  20. 20.
    S. Lee, P. Lee, G.X. Zhang, Z.P. Feng, V.A. Gribkov, M. Liu, A. Serban, T.K.S. Wong, IEEE Trans. Plasma Sci. 26(4), 1119–1126 (1998)Google Scholar
  21. 21.
    M.H. Liu, X.P. Feng, S.V. Springham, S. Lee, IEEE Trans. Plasma Sci. 26(2), 135–140 (1998)Google Scholar
  22. 22.
    S.P. Chow, B.C. Tan, S. Lee, J. Plasma Phys. 8, 21–31 (1972)ADSCrossRefGoogle Scholar
  23. 23.
    T. Oppenländer, G. Pross, G. Decker, M. Trunk, Plasma Phys. 19, 1075 (1977)Google Scholar
  24. 24.
    T.Y. Tou, S. Lee, K.H. Kwek, IEEE Trans. Plasma Sci. 17(2), 311–315 (1989)Google Scholar
  25. 25.
    R. Verma, R.S. Rawat, P. Lee, S. Lee, S.V. Springham, T.L. Tan, M. Krishnan, Phys. Lett. A 373(30), 2568–2571 (2009)Google Scholar
  26. 26.
    S. Lee, P. Lee, S.H. Saw, R.S. Rawat, Plasma Phys. Controlled Fusion 50(6), 065012 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    S. Lee, S.H. Saw, Appl. Phys. Lett. 92(2) (2008)Google Scholar
  28. 28.
    S. Lee, Appl. Phys. Lett. 95(15), 151503 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    S. Lee, R.S. Rawat, P. Lee, S.H. Saw, J. Appl. Phys. 106(2), 023309 (2009)ADSCrossRefGoogle Scholar
  30. 30.
    S. Lee, S.H. Saw, L. Soto, S.V. Springham, S.P. Moo, Plasma Phys. Controlled Fusion 51(7) (2009)Google Scholar
  31. 31.
    R.H. Huddlestone, S.L. Leonard, Plasma Diagnostics (Academic Press, New York, 1965)Google Scholar
  32. 32.
    E. Le Grives, T. Moulin, E. Robert, IEEE Trans. Nucl. Sci. 11, 47–57 (1964)Google Scholar
  33. 33.
    J. Cooper, J. Nucl. Energ.: Part C Plasma Phys. Accel. Thermonucl. Res. 5, 285 (1963)ADSCrossRefGoogle Scholar
  34. 34.
    V.P. Fomichev, S.S. Pravdin, IEEE Trans. Magn. 33(1), 538–543 (1997)Google Scholar
  35. 35.
    S. Lee, S.H. Saw, J. Fusion Energ. 27, 292–295 (2008)CrossRefGoogle Scholar
  36. 36.
    S. Lee, Plasma Phys. Controlled Fusion 50, 105005 (2008)ADSCrossRefGoogle Scholar
  37. 37.
    S. Lee, S.H. Saw, A.E. Abdou, H. Torreblanca, J. Fusion Energ. In Press (published online). doi:10.1007/s10894-10010-19372-10891 (2011)

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • S. Lee
    • 1
    • 2
  • S. H. Saw
    • 1
    • 2
  • R. S. Rawat
    • 3
  • P. Lee
    • 3
  • R. Verma
    • 4
  • A. Talebitaher
    • 3
  • S. M. Hassan
    • 5
  • A. E. Abdou
    • 6
  • Mohamed Ismail
    • 6
  • Amgad Mohamed
    • 6
  • H. Torreblanca
    • 7
  • Sh. Al Hawat
    • 8
  • M. Akel
    • 8
  • P. L. Chong
    • 1
  • F. Roy
    • 1
  • A. Singh
    • 1
  • D. Wong
    • 1
  • K. Devi
    • 1
  1. 1.INTI International UniversityNilaiMalaysia
  2. 2.Institute for Plasma Focus StudiesChadstoneAustralia
  3. 3.National Institute of EducationNanyang Technological UniversitySingaporeSingapore
  4. 4.Pulsed Power Group, Institute for Plasma ResearchGujaratIndia
  5. 5.Centre for Plasma Physics and LasersTEI of CreteCreteGreece
  6. 6.Kansas State UniversityManhattanUSA
  7. 7.Intel CorporationHillsboroUSA
  8. 8.Atomic Energy CommissionDamascusSyria

Personalised recommendations