Advertisement

Journal of Fusion Energy

, Volume 31, Issue 1, pp 30–37 | Cite as

Correlations Among Neutron Yield and Dynamical Discharge Characteristics Obtained from Electrical Signals in a 400 J Plasma Focus

  • Felipe VelosoEmail author
  • Cristian Pavez
  • José Moreno
  • Victor Galaz
  • Marcelo Zambra
  • Leopoldo Soto
Original Research

Abstract

Dynamical discharge characteristics and their relation with the total neutron yield emitted from a 400 J plasma focus operating in deuterium gas are presented. The dynamical nature of the plasma focus is obtained merely from the analysis of the voltage and current electrical signals without considering any particular geometry for the plasma sheath. It is calculated that large neutron yields are obtained when plasma inductance, mechanical energy and plasma voltage at pinching time have larger values. In contrast, no correlations are found among neutron yields either with plasma propagation velocities or quantities at the beginning of the radial phase. There is also found that the current sheath geometry changes according to the gas pressure, having larger curvature for lower pressures. The calculations also provide estimations of sheath thicknesses at the detachment from the insulator in the range of 0.5–1 mm, being thicker for larger neutron yield.

Keywords

Plasma focus Compact devices Neutron emission Electrical diagnostics 

Notes

Acknowledgments

This work is supported by the Chile Bicentennial Program in Science and Technology grant ACT 26, Center for Research and Applications in Plasma Physics and Pulsed Power Technology (P4 Project) F Veloso is supported by CCHEN and grant PSD-01, PBCT. The authors acknowledge to Dr. P Silva his contribution during data acquisition and the fruitful discussions with Drs. A Clausse, H Bruzzone and H Acuña.

References

  1. 1.
    L. Soto, Plasma Phys. Control. Fusion 47, A361 (2005)CrossRefADSGoogle Scholar
  2. 2.
    G. Decker, H. Flemming, J. Kaeppeler, T. Oppenlander, G. Prob, P. Schilling, H. Schmidt, M. Shakhatre, M. Trunk, Plasma Phys. 22, 245 (1980)CrossRefADSGoogle Scholar
  3. 3.
    J. Pouzo, M. Milanese, IEEE Trans. Plasma Sci. 31, 1237 (2003)CrossRefADSGoogle Scholar
  4. 4.
    L. Soto, C. Pavez, A. Tarifeño, J. Moreno, F. Veloso, Plasma Sour. Sci. Technol. 19, 055017 (2010)CrossRefADSGoogle Scholar
  5. 5.
    P. Silva, J. Moreno, L. Soto, L. Birstein, R.E. Mayer, W. Kies, Appl. Phys. Lett. 83, 3269 (2003)CrossRefADSGoogle Scholar
  6. 6.
    L. Soto, A. Esaulov, J. Moreno, P. Silva, G. Sylvester, M. Zambra, A. Nazarenko, A. Clausse, Phys. Plasmas 8, 2572 (2001)CrossRefADSGoogle Scholar
  7. 7.
    P. Silva, L. Soto, J. Moreno, G. Sylvester, M. Zambra, L. Altamirano, H. Bruzzone, A. Clausse, C. Moreno, Rev. Sci. Instrum. 73, 2583 (2002)CrossRefADSGoogle Scholar
  8. 8.
    J. Moreno, P. Silva, L. Soto, Plasma Sour. Sci. Technol. 12, 39 (2003)CrossRefADSGoogle Scholar
  9. 9.
    P. Silva, L. Soto, W. Kies, J. Moreno, Plasma Sour. Sci. Technol. 13, 329 (2004)CrossRefADSGoogle Scholar
  10. 10.
    L. Soto, P. Silva, J. Moreno, M. Zambra, W. Kies, R.E. Mayer, A. Clausse, L. Altamirano, C. Pavez, L. Huerta, J.Phys. D: Appl. Phys. 41, 205215 (2008)CrossRefADSGoogle Scholar
  11. 11.
    L. Soto, C. Pavez, J. Moreno, M. Barbaglia, A. Clausse, Plasma Sour. Sci. Technol. 18, 015007 (2009)CrossRefADSGoogle Scholar
  12. 12.
    C. Pavez, L. Soto, IEEE Trans. Plasma Sci. 38, 1132 (2010)CrossRefADSGoogle Scholar
  13. 13.
    A.V. Dubrovsky, V.A. Gribkov, Y.P. Ivanov, P. Lee, S. Lee, M. Liu, V.A. Samarin, Nukleonika 46(Suppl 1), S107–S111 (2001)Google Scholar
  14. 14.
    R. Verma, R.S. Rawat, P. Lee, M. Krishnan, S.V. Springham, T.L. Tan, IEEE Trans. Plasma Sci. 38, 652 (2010)CrossRefADSGoogle Scholar
  15. 15.
    M. Barbaglia, H. Bruzzone, H. Acuña, L. Soto, A. Clausse, Plasma Phys. Control. Fusion 51, 045001 (2009)CrossRefADSGoogle Scholar
  16. 16.
    M. Milanese, R. Moroso, J. Pouzo, Eur. Phys. J. D 27, 77 (2003)CrossRefADSGoogle Scholar
  17. 17.
    R.K. Rout, P. Mishra, A.M. Rawool, L.V. Kulkarni, S.C. Gupta, J. Phys. D Appl. Phys. 41, 205211 (2008)CrossRefADSGoogle Scholar
  18. 18.
    R. Shukla, S.K. Sharma, P. Banerjee, R. Das, P. Deb, T. Prabahar, B.K. Das, B. Adhikary, A. Shyam, Rev. Sci. Instrum. 81, 083501 (2010)CrossRefADSGoogle Scholar
  19. 19.
    R. Verma, R.S. Rawat, P. Lee, S.V. Springham, T.L. Tan, M. Krishnan, J. Phys. D Appl. Phys. 42, 235203 (2009)CrossRefADSGoogle Scholar
  20. 20.
    R. Verma, R.S. Rawat, P. Lee, M. Krishnan, S.V. Springham, T.L. Tan, Plasma Phys. Control. Fusion 51, 075008 (2009)CrossRefADSGoogle Scholar
  21. 21.
    R. Verma, R.S. Rawat, P. Lee, S. Lee, S.V. Springham, T.L. Tan, M. Krishnan, Phys. Lett. A 373, 2568–2571 (2009)CrossRefADSGoogle Scholar
  22. 22.
    R. Verma, R.S. Rawat, P. Lee, S.V. Springham, T.L. Tan, M.V. Roshan, M. Krishnan, J. Plasma Fusion Res Ser. 8, 1283 ((2009))Google Scholar
  23. 23.
    R. Verma, P. Lee, S. Lee, S.V. Springham, T.L. Tan, R.S. Rawat, M. Krishnan, Appl. Phys. Lett. 93, 101501 (2008)CrossRefADSGoogle Scholar
  24. 24.
    R. Verma, M.V. Roshan, F. Malik, P. Lee, S. Lee, S.V. Springham, T.L. Tan, M. Krishnan, R.S. Rawat, Plasma Sour. Sci. Technol. 17, 045020 (2008)CrossRefADSGoogle Scholar
  25. 25.
    S.M. Hassan, T. Zhang, A. Patran, R.S. Rawat, S.V. Springham, T.L. Tan, D. Wong, W. Wang, S. Lee, V.A. Gribkov, S.R. Mohanty, P. Lee, Plasma Sour. Sci. Technol. 15, 614 (2006)CrossRefADSGoogle Scholar
  26. 26.
    H. Bruzzone, H. Acuña, M. Barbaglia, A. Clausse, Plasma Phys. Control. Fusion 48, 609 (2006)CrossRefADSGoogle Scholar
  27. 27.
    J.W. Mather, P.J. Bottoms, Phys. Fluids 11, 611 (1967)CrossRefADSGoogle Scholar
  28. 28.
    H. Bruzzone, R. Vieytes, Plasma Phys. Control. Fusion 35, 1745 (1993)CrossRefADSGoogle Scholar
  29. 29.
    H. Bruzzone, H. Acuña, A. Clausse, Brazilian J Phys 38, 117 (2008)CrossRefADSGoogle Scholar
  30. 30.
    F. Castillo Mejia, M. Milanese, R. Moroso, J. Pouzo, J. Phys. D Appl. Phys. 30, 1499 ((1997))CrossRefADSGoogle Scholar
  31. 31.
    S. Lee, in Radiations in Plasmas, vol. II ed. by B.E. McNamara (World Scientific, Singapore, 1984), pp. 978–987Google Scholar
  32. 32.
    S. Lee,in Radiative Dense Plasma Focus Computational Package: RADPF, 2010 http://www.intimal.edu.my/school/fas/UFLF/; http://www.plasmafocus.net/IPFS/modelpackage/File1RADPF.htm
  33. 33.
    S. Lee, S.H. Saw, L. Soto, S.V. Springham, S.P. Moo, Plasma Phys. Control. Fusion 51, 075006 (2009)CrossRefADSGoogle Scholar
  34. 34.
    W. Kies, Plasma Phys. Control. Fusion 28, 1645 (1986)CrossRefADSGoogle Scholar
  35. 35.
    M. Zakaullah, A. Waheed, S. Ahmad, S. Zeb, S. Hussain, Plasma Sour. Sci. Technol. 12, 443 (2003)CrossRefADSGoogle Scholar
  36. 36.
    H. Bruzzone, H. Acuña, A. Clausse, Plasma Phys. Control. Fusion 49, 105 (2007)CrossRefADSGoogle Scholar
  37. 37.
    D.A. Freiwald, K.R. Prestwich, G.W. Kuswa, E.H. Beckner, Phys. Lett. A 36, 297 (1971)CrossRefADSGoogle Scholar
  38. 38.
    S. Lee, A. Serban, IEEE Trans. Plasma Sci. 24, 1101 (1996)CrossRefADSGoogle Scholar
  39. 39.
    M. Scholz, R. Miklaszewski, M. Paduch, M. Sadowski, A. Szydlowski, K. Tomaszewski, IEEE Trans. Plasma Sci. 30, 476 (2002)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Felipe Veloso
    • 1
    • 2
    Email author
  • Cristian Pavez
    • 1
    • 2
  • José Moreno
    • 1
    • 2
  • Victor Galaz
    • 2
    • 3
  • Marcelo Zambra
    • 1
    • 2
    • 4
  • Leopoldo Soto
    • 1
    • 2
  1. 1.Comisión Chilena de Energía NuclearSantiagoChile
  2. 2.Center for Research and Applications in Plasma Physics and Pulsed Power—P4SantiagoChile
  3. 3.Facultad de Ciencias Físicas y MatemáticasUniversidad de ChileSantiagoChile
  4. 4.Universidad Diego PortalesSantiagoChile

Personalised recommendations