Advertisement

Journal of Fusion Energy

, Volume 30, Issue 6, pp 490–493 | Cite as

Effect of Anode Impurity on the Neutron Production in a Dense Plasma Focus

  • H. R. YousefiEmail author
  • K. Masugata
Original Research

Abstract

In this study, neutron production characteristics were investigated by employing three different anode designs. Previously, Takao et al. in Plasma Sour Sci Technol 12:407, (2003) studied the effect of anode design on the production of impurity ions in a dense plasma focus (DPF) device. It was found that rod type anodes led to large quantities of impurity ions, resulting in an ion purity of only 25%. In contrast, in hollow type anodes the quantities of impurity ions is strongly reduced, resulting in an enhanced ion purity of 91%. These impurities in the DPF system originate partly from residual gas in the vacuum system, but also from vaporization of the anode, which produces metallic ions such as copper. In the present work, we extend previous investigations Takao et al. in Plasma Sour Sci Technol 12:407, (2003) of the effects of anode shape (A—long hollow, B—short hollow and C—rod type) on neutron production. Here we focus specifically on the effects of anode impurity on neutron production. It was found that in anode type C, the neutron intensity and neutron yield is lower than in type A or B.

Keywords

Dense plasma focus Neutron production Ion impurity 

References

  1. 1.
    K. Takao et al., Plasma. Sour. Sci. Technol. 12, 407 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    W.H. Bennet, Phys. Rev. 45, 890 (1934)ADSCrossRefGoogle Scholar
  3. 3.
    L. Tonks, Phys. Rev. 56, 360 (1939)ADSzbMATHCrossRefGoogle Scholar
  4. 4.
    D.D. Ryutov, Rev. Mod. Phys. 72, 167 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    M. Zakaullah et al., Phys. lett. A. 137, 39 (1989)ADSCrossRefGoogle Scholar
  6. 6.
    H.R. Yousefi et al., Phys. lett. A. 361, 360 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    J. Feugeas, E. Llonch, C.O. de Gonzalez, G.G. Galambos, J. Appl. Phys. 64, 2648 (1988)ADSCrossRefGoogle Scholar
  8. 8.
    J. Feugeas, C.O. de Gonzalez, M. Nieto, M.F. Peyronal, G. Sanchez, Braz. J. Vac. Appl. 9, 118 (1990)Google Scholar
  9. 9.
    J. Feugeas, G. Sanchez, C.O. de Gonzalez, J.D. Hermida, G. Scordia, Radiat. Eff. Def. Sol. 188, 267 (1994)CrossRefGoogle Scholar
  10. 10.
    D.J. Johnson, J. Appl. Phys. 45, 1147 (1974)ADSCrossRefGoogle Scholar
  11. 11.
    M. Zakaullah et al., Plasma. Sour. Sci Technol. 5, 544–552 (1996)ADSCrossRefGoogle Scholar
  12. 12.
    S.R. Mohanty et al., J. App. Phys. 46, 3039 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    F. Castillo et al., Phys. D. Appl. Phys. 34, 141 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    F. Castillo et al., Plasma. Phys. Control. Fusion. 45, 289 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    M. Zakaullah et al., Plasma. Sour. Sci. Technol. 7, 206–218 (1998)ADSCrossRefGoogle Scholar
  16. 16.
    M. Zakaullah et al., Plasma. Sour. Sci. Technol. 4, 117 (1995)ADSCrossRefGoogle Scholar
  17. 17.
    M. Zakaullah et al., Phys. Plasmas. 6, 3188 (1999)ADSCrossRefGoogle Scholar
  18. 18.
    J.W. Mather, Phys. Fluid. 8, 366–372 (1965)ADSCrossRefGoogle Scholar
  19. 19.
    D.E. Potter, Phys. Fluid. 14, 1911 (1971)ADSCrossRefGoogle Scholar
  20. 20.
    M.D. Raizer, V.N. Tsitovich, Plasma. Phys. 7, 203 (1965)Google Scholar
  21. 21.
    M.J. Bernstein, Phys. Fluids 13, 2858 (1970)ADSCrossRefGoogle Scholar
  22. 22.
    U. Jager, H. Herold, Nuc. Fusion. 27, 407 (1987)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Plasma Physics Research Center, Science and Research BranchIslamic Azad UniversityTehranIran
  2. 2.Department of Electric and Electronic System EngineeringUniversity of ToyamaToyamaJapan

Personalised recommendations