Journal of Fusion Energy

, 30:481 | Cite as

Effect of Negative Ion Parameters on Sheath Formation Criterion in Electronegative Plasmas

Original Research

Abstract

Using a fluid model for three types of particles, the plasma-sheath formation criterion has been analyzed in collisional electronegative plasma, and the effects of the negative ion temperature and density are examined on the positive ion transition velocity. It is shown that in the collisional sheath, there will be an allowable interval for the positive ion velocity between two upper and lower limits as the plasma-sheath formation criterion; by increasing the mean temperature of the negative charge carriers, this velocity interval decreases. To confirm the correction of the allowable interval, the plasma sheath equations are numerically solved, and the negative ion temperature effect for example, is examined on the sheath formation.

Keywords

Ion temperature Plasma-sheath transition Electronegative plasmas 

References

  1. 1.
    U. Flender, K. Wiesemann-K, J. Plasma Phys. 15, 123 (1995)Google Scholar
  2. 2.
    J.I. Fernandez Palop, J. Balesteros, V. Colomer, M.A. Hernandez, J. Appl. Phys. 80, 4282 (1996)ADSCrossRefGoogle Scholar
  3. 3.
    M. Schmidt, R. Foest, R. Basner, J. Phys. IV 8, 231 (1998)CrossRefGoogle Scholar
  4. 4.
    D. Bohm, in The Characteristics of Electrical Discharges in Magnetic Fields, ed. by A. Guthrie, R. Wakerling (McGraw Hill, New York, 1949)Google Scholar
  5. 5.
    N. St, J. Braithwaite, J.E. Allen, J. Phys. D Appl. Phys. 21, 1733 (1998)Google Scholar
  6. 6.
    R.N. Franklin, J. Snell, J. Phys. D Appl. Phys. 31, 2532 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    J.E. Allen, Plasma Sources Sci. Technol. 13, 43 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    R.N. Franklin, J. Phys. D Appl. Phys. 32, L71 (1999)ADSCrossRefGoogle Scholar
  9. 9.
    G.C. Das, B. Singha, J. Chutia, Phys. Plasmas 6, 3685 (1999)ADSCrossRefGoogle Scholar
  10. 10.
    J.Y. Liu, Z.X. Wang, X. Wang, Phys. Plasmas 10, 3032 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    M. Lei, Y.Y. Zhang, W. Ding, J. Liu, X. Wang, Plasma Sci Technol 8, 544 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    B. Alterkop, J. Appl. Phys. 95, 1650 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    H. Ghomi, M. Khoramabadi, J. Plasma Phys. 76, 247 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    M. Khoramabadi, H. Ghomi, M. Ghorannevis, J. Fusion Energ. 29, 365 (2010)CrossRefGoogle Scholar
  15. 15.
    R.N. Franklin, J. Snell, J. Plasma Phys. 64, 131 (2000)ADSCrossRefGoogle Scholar
  16. 16.
    Y.-C. Ghim, N. Hershkowitz, Appl. Phys. Lett. 94, 151503 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    M.A. Lieberman, A.J. Lichtenberg, Principles of Plasma Discharges and Materials Processing (Wiley, New York, 2005)CrossRefGoogle Scholar
  18. 18.
    K. Takizawa, A. Kono, K. Sasaki, Appl. Phys. Lett. 90, 011503 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Laser and Plasma Research InstituteShahid Beheshti UniversityEvinIran
  2. 2.Department of Physics, Boroujerd BranchIslamic Azad UniversityBoroujerdIran

Personalised recommendations