Journal of Fusion Energy

, Volume 30, Issue 5, pp 377–381 | Cite as

Electromagnetic Theory of the Binding Energy of the Hydrogen Isotopes

  • Bernard SchaefferEmail author
Original Research


Bieler of the Rutherford laboratory imagined in 1924 a magnetic attraction equilibrating an electrostatic repulsion between the protons. Since the discovery of the neutron and the magnetic moments of the nucleons proving that the neutron contains electric charges, nobody, as far as I know, has tried to apply electromagnetism to the nuclear interaction. As it is well known, there is an attraction between an electric charge and a neutral conductor. In the deuteron, the positive charge of the neutron is repelled and the negative charge is attracted by the proton with a net attraction. The repulsion between the magnetic moments equilibrates the electrostatically induced attraction. The calculated value is −1.6 MeV not too far from the experimental value (−2.2 MeV). The calculated 7 hydrogen isotopes stay satisfactorily along the experimental isotopic parabola. No arbitrary fitting parameter is used, only universal physical constants. The electromagnetic theory predicts a theoretical ratio between nuclear and chemical energies: \(\frac{m_p}{m_e \alpha}.\)


Nuclear interaction Hydrogen isotopes Nuclear binding energy Electromagnetic interaction Fine structure constant Proton-neutron potential 


  1. 1.
    E.S. Bieler, Proc. R. Soc. Lond. A 105, 434–450 (1924)ADSCrossRefGoogle Scholar
  2. 2.
    F. Bloch, Annales de l’I.P.H.P. 8, 63–78 (1938)MathSciNetGoogle Scholar
  3. 3.
    A.O. Barut, Annalen der Physik 1–2, 498 (1986)MathSciNetGoogle Scholar
  4. 4.
    R. Feynman, R.B. Leighton, M. Sands, The Feynman Lectures on Physics, 2 (Pearson/Addison-Wesley, Reading, MA, 2006)Google Scholar
  5. 5.
    G.E. Owen, Introduction to Electromagnetic Theory (Courier Dover Publications, New York, 2003)Google Scholar
  6. 6.
    K. Yosida, Theory of magnetism (Springer, Berlin, 1996)zbMATHGoogle Scholar
  7. 7.
    A.R. Leach, Molecular modelling: principles and applications (Pearson Education, Harlow, Essex, United Kingdom, 2001)Google Scholar
  8. 8.
    V.F. Weisskopf, J.M. Blatt, Theoretical Nuclear Physics (Courier Dover Publications, New York, 1991)Google Scholar
  9. 9.
    A. Vértes, S. Nagy, Z. Klencsár, R.G. Lovas, Handbook of nuclear chemistry, 1 (Springer, Berlin, 2003)Google Scholar
  10. 10.
    M. Caama-o et al., EPJ Special topics 150, 9–12 (2007)CrossRefGoogle Scholar
  11. 11.
    O. Manuel, C. Bolon, A. Katragada, M. Insall, J. Fusion Energ. 19, 93–98 (2001)CrossRefGoogle Scholar
  12. 12.
    G. Audi et al., Nucl. Phys. A 729, 337–676 (2003)ADSGoogle Scholar
  13. 13.
    D. Cortina-Gill, W. Mittig, Europhys. News 41, 23–26 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.ParisFrance

Personalised recommendations