Journal of Fusion Energy

, Volume 29, Issue 6, pp 532–539 | Cite as

Two-Dimensional Modeling of Ideal Merging Plasma Jets

  • J. Loverich
  • A. Hakim
Original Research


Idealized merging argon plasma jets are simulated in 2D using both gas dynamic and MHD models. Results indicate that peak pressures of several hundred kilobar can be achieved for high Mach number jets. Including a simple optically thin bremsstrahlung radiation model and plasma targets shows that extremely high densities and magnetic fields can be achieved during jet merging on the order of ~1,000 times the initial density/field. Further investigations should include detailed ionization processes and more accurate radiation modeling to properly capture the radiation transport and subsequent target compression.


Plasma jets Radiation Simulation MHD Gas dynamic Algorithm MIF MTF 



This research was supported in part by the Department of Energy SBIR Grant DE-SC0000833. The fluids code uses the FACETS framework [2] and the authors would like to thank the FACETS framework team, J Cary, A Hakim, A Pletzer, S Shasharina, M Miah (Tech-X Corporation) and T Epperly (Lawrence Livermore National Laboratory).


  1. 1.
    S. Atzeni, The physical basis for numerical fluid simulations in laser fusion. Plasma Phys. Control. Fusion 29(11), 1535–1604 (1987)CrossRefADSGoogle Scholar
  2. 2.
    J.R. Cary, A. Hakim, M. Miah, S. Kruger, A. Pletzer, S. Shasharina, S. Vadlamani, A. Pankin, R. Cohen, T. Epperly, T. Rognlien, R. Groebner, S. Balay, L. McInnes, H. Zhang, FACETS a Framework for Parallel Coupling of Fusion Components, The 18th Euromicro International Conference on Parallel, Distributed and Network-Based Computing. Pisa, Italy. 2010Google Scholar
  3. 3.
    J. Cassibry, Modeling of formation and implosion of plasma liners by discrete jets. 39th AIAA Plasmadynamics and Lasers Conference (2008)Google Scholar
  4. 4.
    J. Cassibry et al, Hydrodynamic modeling of the plasma liner experiment. 51st Annual APS-DPP Meeting (2009)Google Scholar
  5. 5.
    A. Dedner et al, Hyperbolic divergence cleaning for the MHD equations. J. Comput. Phys. 175, 645–673 (2002)MATHCrossRefMathSciNetADSGoogle Scholar
  6. 6.
    J.H. Degnan et al, Compression of plasma to megabar range using imploding liner. Phys. Rev. Lett. 82(13), 2681–2684 (1999)CrossRefADSGoogle Scholar
  7. 7.
    S.C. Hsu, Technical summary of the first U.S. plasma jet workshop. J. Fusion Energ. 75(10), 246–257 (1995)Google Scholar
  8. 8.
    I.R. Lindemuth et al, Target plasma formation for magnetic compression/magnetized target fusion. Phys. Rev. Lett. 75(10), 1953–1956 (1995)CrossRefADSGoogle Scholar
  9. 9.
    P.B. Parks, On the efficacy of imploding plasma liners for magnetized fusion target compression. Phys. Plasmas 15, 062506–062512 (2008)CrossRefADSGoogle Scholar
  10. 10.
    J.M. Stone et al, A simple unsplit Godunov method for multidimensional MHD. New Astron. 14, 139–148 (2009)CrossRefADSGoogle Scholar
  11. 11.
    Y. C. F. Thio et al, Magnetized target fusion in a spheroidal geometry with Standoff Drivers. Curr. Trends Int. Fusion Res. p. 113 (1999)Google Scholar
  12. 12.
    Y.C. F. Thio et al, A physics exploratory experiment on plasma liner formation. J. Fusion Energ. 20, 1–11 (2001)CrossRefGoogle Scholar
  13. 13.
    K. Waagan, A positive MUSCL-Hancock scheme for ideal magnetohydrodynamics. J. Comput. Phys. 228, 8609–8626 (2009)MATHCrossRefMathSciNetADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Tech-X CorporationBoulderUSA

Personalised recommendations