Journal of Fusion Energy

, Volume 29, Issue 4, pp 317–321

Ultradense Deuterium

Original Paper

Abstract

An attempt is made to explain the recently reported occurrence of ultradense deuterium as an isothermal transition of Rydberg matter into a high density phase by quantum mechanical exchange forces. It is conjectured that the transition is made possible by the formation of vortices in a Cooper pair electron fluid, separating the electrons from the deuterons, with the deuterons undergoing Bose–Einstein condensation in the core of the vortices. If such a state of deuterium should exist at the reported density of about 130,000 g/cm3, it would greatly facility the ignition of a thermonuclear detonation wave in pure deuterium, by placing the deuterium in a thin disc, to be ignited by a pulsed ultrafast laser or particle beam of modest energy.

Keywords

Ultradense deuterium Thermonuclear ignition 

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.University of NevadaRenoUSA

Personalised recommendations